
1

Generating Good Generators for Inductive Relations

LEONIDAS LAMPROPOULOS, University of Pennsylvania

ZOE PARASKEVOPOULOU, Princeton University

BENJAMIN C. PIERCE, University of Pennsylvania

Property-based random testing (PBRT) is widely used in the functional programming and veri�cation communities. For

testing simple properties, PBRT tools such as �ickCheck can automatically generate random inputs of a given type. But

for more complex properties, e�ective testing o�en demands generators for random inputs that belong to a given type and
satisfy some logical condition. �ickCheck provides a library of combinators for building such generators by hand, but this

can be tedious for simple conditions and error prone for more complex ones. Fortunately, the process can o�en be automated.

�e most prominent method, narrowing, works by traversing the structure of the condition, lazily instantiating parts of the

data structure as constraints involving them are met.

We show how to use ideas from narrowing to compile a large subclass of Coq’s inductive relations into e�cient generators,

avoiding the interpretive overhead of previous implementations. More importantly, the same compilation technique allows us

to produce proof terms certifying that each derived generator is good—i.e., sound and complete with respect to the inductive

relation it was derived from. We implement our algorithm as an extension of �ickChick, an existing tool for property-based

testing in Coq. We evaluate our method by automatically deriving good generators for the majority of the speci�cations in

So�ware Foundations, a formalized textbook on programming language foundations.

CCS Concepts: •So�ware and its engineering→ General programming languages;

Additional Key Words and Phrases: Random Testing, Property-based Testing, Coq, �ickCheck, �ickChick, Narrowing

ACM Reference format:
Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2017. Generating Good Generators for Inductive

Relations. PACM Progr. Lang. 1, 1, Article 1 (January 2017), 28 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Property-based random testing (PBRT) is a popular technique for quickly discovering so�ware errors. Starting

with Haskell’s �ickCheck (Claessen and Hughes 2000), property-based testing tools have spread to a wide variety

of languages (Arts et al. 2008; Hughes 2007; Lindblad 2007; Pacheco and Ernst 2007; Papadakis and Sagonas 2011).

�e bene�ts of PBRT are also enjoyed by users of automated theorem provers like ACL2 (Chamarthi et al. 2011) and

proof assistants like Isabelle (Bulwahn 2012a), Agda (Dybjer et al. 2004), and, more recently, Coq (Paraskevopoulou

et al. 2015); testing in these se�ings can save wasting time and e�ort on false conjectures (Dybjer et al. 2003).

For complex properties, se�ing up PBRT-style testing can involve substantial work. Particular e�ort is required

for speci�cations involving sparse preconditions: ones that hold for only a small fraction of the input space. For

example, consider the following property (wri�en in Coq’s internal functional language, Gallina), which states

that inserting an element into a sorted list preserves sortedness:

Definition prop_insert (x : nat) (l : list nat) := sorted l ==> sorted (insert x l).

If we test this property by generating random lists, throwing away ones that are not sorted, and checking the

conclusion sorted (insert x l) for the rest—the generate-and-test approach—we will waste most of our time

2017. 2475-1421/2017/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:2 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

generating and discarding unsorted lists; worse, the distribution of the lists that we do not discard will be strongly

skewed toward short ones, which might fail to expose bugs that only show up for larger inputs.

To tackle properties with sparse preconditions, �ickCheck provides a comprehensive library of combinators

for writing custom generators for well-distributed random values. Such generators are heavily—and successfully—

employed by �ickCheck users. However, writing them can be both complex and time consuming, sometimes to

the point of being a research contribution in its own right (Hriţcu et al. 2013, 2016; Palka et al. 2011)!

�is has led to interest in automated techniques for enumerating or randomly generating data structures

satisfying some desired condition (Bulwahn 2012b; Claessen et al. 2014; Fetscher et al. 2015; Gligoric et al. 2010;

Kuraj and Kuncak 2014; Lampropoulos et al. 2017). One particularly successful technique is narrowing (Antoy

2000), a concept borrowed from functional logic programming. �e idea of narrowing is to construct a random

data structure lazily while traversing the de�nition of the predicate it must satisfy. For example, consider the

sorted predicate: a list with at most one element is always sorted, while a list with at least two elements

(x::y::ys) is sorted if x is smaller than y and (y::ys) is itself sorted.
1

Fixpoint sorted (l : list nat) :=
match l with
| [] => true
| [x] => true
| x::y::ys => x <=? y && sorted (y::ys)

end.

To generate a list l satisfying sorted l using narrowing, we look �rst at the pa�ern match and choose randomly

whether to instantiate l to an empty list, a list of one element, or a list with at least two elements. In the �rst case,

we have a value satisfying the predicate and we are done. In the second, we have a free choice for the value of x
and then we are done. In the third case, we next encounter the constraint x<=? y; we generate values for x and y to

satisfy this constraint locally and then proceed recursively to generate a value for ys satisfying sorted (y::ys).

�e next time we explore sorted, the parameter l is partially instantiated—it consists of the known value y
consed onto the unknown value ys; this means that we cannot choose the empty branch; if we choose the second

branch we do not have to generate x; and if we choose the third branch we only have to generate the second

element of the list (to be bigger than the �rst) and proceed recursively. Automatic narrowing-based generators

can achieve testing e�ectiveness (measured as bugs found per test generated) comparable to hand-wri�en custom

generators, even for challenging examples (Claessen et al. 2014; Fetscher et al. 2015; Lampropoulos et al. 2017).

Unfortunately, both hand-wri�en and narrowing-based automatic generators are subject to bugs. For hand-

wri�en ones, this is because generators for complex conditions can o�en be complex, o�en more than the

condition itself; moreover, they must be kept in sync if the condition is changed, another source of bugs.

Automatic generators do not su�er from the la�er problem, but narrowing solvers are themselves rather complex

beasts, whose correctness is therefore questionable. (�e tool of Lampropoulos et al. (2017) does come with a

proof, but only for an abstract model of part of the core algorithm, not to the full implementation.)

Bugs in generators can come in two forms: they can generate too much, or too li�le—i.e., they can be either

unsound or incomplete. Unsoundness can lead to false positives, which can waste signi�cant amounts of time.

Incompleteness can lead to ine�ective testing, where certain bugs in the program under test can never be

found because the generator will never produce an input that provokes them. Both problems can be detected—

unsoundness by double-checking whether generated values satisfy the property, incompleteness by techniques

such as mutation testing (Jia and Harman 2011)—and unsoundness can be mitigated by �ltering away generated

values that fail the double-check, but incompleteness bugs can require substantial e�ort to understand and repair.

1
Strictly speaking, this de�nition is not legal in Gallina, since y::ys is not recognized as a strict subterm of l. Expert Coq readers will know

how it can be massaged to make the termination checker happy; others can ignore this detail.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generating Good Generators for Inductive Relations • 1:3

�e core contribution of this paper is a method for compiling a large class of logical conditions, expressed

as Coq inductive relations, into random generators together with soundness and completeness proofs for these

generators. (We do not prove that the compiler itself is correct in the sense that it can only produce good

generators; rather, we adopt a translation validation approach (Pnueli et al. 1998) where we produce a checkable

certi�cate of correctness along with each generator.) A side bene�t of this approach is that, by compiling

inductive relations into generators, we avoid the interpretive overhead of existing narrowing-based generators.

As discussed by Lampropoulos et al. (2017), this overhead is one of the reasons existing generators can be an

order of magnitude slower than their hand-wri�en counterparts.

We have implemented our method as an extension of �ickChick, a �ickCheck variant for PBRT in

Coq (Paraskevopoulou et al. 2015). Using �ickChick, a Coq user can write down desired properties like

Conjecture preservation : forall (t t' : tm) (T : ty),
|- t \in T -> t ===> t' -> |- t' \in T.

and look for counterexamples with no additional e�ort:

QuickChick preservation. −→ QuickChecking preservation... Passed 10000 tests

Our technical contributions are as follows:

• We present a narrowing-inspired method for compiling a large class of inductive de�nitions into random

generators. Section 3 introduces our compilation algorithm through a sequence of progressively more

complex examples; Section 4 describes it in full detail.

• We show how this algorithm can also be used to produce proofs of (possibilistic) correctness for every

derived generator (Section 5). Indeed, by judicious application of Coq’s typeclass features, we can use

exactly the same code to produce both generators and proof terms.

• We implement the algorithm as an extension of �ickChick, further integrating testing and proving in

the Coq proof assistant and providing more push-bu�on-style automation while retaining customizability

(Section 6).

• To evaluate the applicability of our method, we applied the �ickChick implementation to a large part

of So�ware Foundations (Pierce et al. 2016), a machine-checked textbook on programming language

theory. Of the 232 nontrivial theorems we considered, 84% are directly amenable to PBRT (the rest are

higher-order properties that would at least require signi�cant creativity to validate by random testing);

of these, 83% can be tested using our algorithm. We discuss these �ndings in detail in Section 7.1.

• To evaluate the e�ciency of our generators, we compare them to �ne-tuned handwri�en generators

for information-�ow control abstract machines (Section 7.2). �e derived generators were 1.75× slower

than the custom ones, demonstrating a signi�cant speedup over previous interpreted approaches such as

Luck (Lampropoulos et al. 2017).

Section 2 introduces �ickChick and provides necessary background and notations for the rest of the paper.

Section 8 discusses related work. We conclude and draw directions for future work in Section 9.

2 QUICKCHICK : QUICKCHECK IN COQ
We begin with an overview of property-based random testing within Coq using �ickChick (Dénès et al. 2014),

introducing its basic notations and typeclasses. Our running example for this section and the rest of the paper

will be the following data type of binary Trees of natural numbers:

Inductive Tree :=
| Leaf : Tree
| Node : nat -> Tree -> Tree -> Tree.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

Consider the following simple function that completely mirrors its input tree, that is it interchanges the le� and

right children of all Nodes:

Fixpoint mirror (t : Tree) :=
match t with
| Leaf => Leaf
| Node x l r => Node x (mirror r) (mirror l)

end.

A natural property we expect to hold is that mirror is an involution: mirroring a tree twice yields the original

tree. Armed with an equality on trees we can easily state this property in Coq:

Definition mirror_involution (t : Tree) : bool := mirror (mirror t) == t.

In order to test the property in �ickChick, we require three things: a generator for random data, a printer for

counterexamples, and a shrinker for �nding minimal counterexamples. In this paper we focus on generators;

see Claessen and Hughes (2000) for discussion of the others.

2.1 Generators
Just like �ickCheck, �ickChick provides a variety of generator combinators that facilitate the generation of

complex data structures. For example, we can encode a simple, naive generator for binary trees that �ips a coin

to decide whether to create a Leaf or a Node, and proceeds recursively if necessary.

Fixpoint genTree : G Tree :=
oneOf [ret Leaf

; do! x <- arbitrary;
do! l <- genTree;
do! r <- genTree;
ret (Node x l r)].

�e oneOf combinator serves the role of the coin �ip; it takes a list of generators and picks one of them at random.

Here we have two generators: the �rst generator always returns a Leaf in the generator monad G, described

below; the second one produces an arbitrary number and the le� and right subtrees l and r recursively, before

combining the generated data into a Node. We use the monadic do! notation provided by �ickChick to sample

the di�erent variables in sequence.

Unfortunately, the genTree generator as wri�en does not actually work: there is no guarantee that it terminates;

indeed, the expected size of generated trees is in�nite! In the random testing community, to overcome this

limitation, it is common to introduce a size parameter to limit the size of generated terms. In the following

second a�empt at a generator, we use a natural number size to signify the maximum depth of the generated

tree. In the rest of the paper we will refer to size parametric generators as bounded generators.

Fixpoint genTreeSized (size : nat) :=
match size with
| O => ret Leaf
| S size' => freq [(1, ret Leaf)

; (size, do! x <- arbitrary;
do! l <- genTreeSized size';
do! r <- genTreeSized size';
ret (Node x l r))]

end.

In the above bounded generator, when the size is zero, the only tree that can be generated is a Leaf. When the

size is nonzero, we have a choice: either generate a Leaf, or generate a Node where the le� and right subtrees l

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generating Good Generators for Inductive Relations • 1:5

and r are generated recursively with size decremented by 1. �is choice is made using the freq combinator

(short for frequency); freq takes a list of weighted generators and picks one of them, based on the induced

discrete distribution. For example, gen tree sized creates a Leaf 1

size+1
of the time and a Node size

size+1
of the

time. �e freq combinator gives the user a degree of local distribution control that can be used to �ne-tune the

distribution of generated data, a crucial feature in practice.

Once we have a bounded generator we can obtain an unbounded one using the sized combinator. To understand

what sized does we must �rst peek at the de�nition of the G monad.

Definition G (A:Type) : Type := nat -> RandomSeed -> A.

G is represented as a “reader” monad with two parameters, a random seed and a size parameter. When �ickChick

runs a computation in the G monad to generate random elements, it will use increasingly larger size parameters

until either a counterexample is found or a prede�ned size limit is reached. Given a bounded generator, sized
will apply it to the size parameter that is internal to the representation of the generator, making it implicitly

bounded.

Definition sized {A : Type} (f : nat -> G A) : G A := fun n r => (f n) n r.

2.2 �ickChick Typeclasses
Generation. �e binary trees of this section always contain nats as labels. Most of the time, however, Coq

users would use a polymorphic tree data type instead. Revisiting the bounded Tree generator in the polymorphic

case, we would need to generate an arbitrary x of the label type. To avoid clu�ering the de�nitions and calls to

genTreeSized with speci�c generators, we leverage Coq’s typeclasses (Sozeau and Oury 2008; Wadler and Blo�

1989).

Speci�cally, just like Haskell’s �ickCheck, �ickChick provides the Gen typeclass with a single method,

arbitrary, that produces random elements of the underlying type A.

Class Gen (A : Type) := { arbitrary : G A }.

Looking back at genTreeSized, the arbitrary method we used to generate x comes from the default Gen
instance for natural numbers.

In addition, unlike Haskell’s �ickCheck, �ickChick introduces another class, GenSized: the class of bounded

generators that explicitly depend on a size parameter.

Class GenSized (A : Type) := { arbitrarySized : nat -> G A }.

�ickChick automatically converts GenSized instances to obtain corresponding Gen instances by applying sized
to the bounded generator of the GenSized class. �is is done by adding the following instance

Instance GenOfGenSized {A} {H : GenSized A} : Gen A := {| arbitrary := sized arbitrarySized |}.

�e above instance provides an arbitrary method by applying sized to the arbitrarySized method of the

GenSized instance. We will leverage this relation between GenSized and Gen during proof generation (Section 5).

Just like in Haskell’s �ickCheck ecosystem, it is straightforward to automatically derive GenSized instances

(as well as instances of similar typeclasses for shrinking and printing) (Xia 2017). Using the techniques that will

be described in Section 5, we can in addition provide proofs of correctness of the derived generators.

Decidability. In the context of a proof assistant like Coq, we are faced with a challenge that is non-existent

in a functional se�ing: non-executable speci�cations. Consider, for example, a di�erent formulation of the

mirror involution property that uses syntactic equality instead.

Definition mirror_involution (t : Tree) : Prop := mirror (mirror t) = t.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

Since the conclusion of this property is in Prop, we cannot actually execute it for an arbitrary generated tree t to

decide whether it holds or not. To that end, �ickChick provides a Dec typeclass over Props P, with a single

method dec that provides a proof of either P or its negation.

Class Dec (P : Prop) : Type := { dec : {P} + {˜ P} }.

A predicate that is an instance of this class can be used as the conclusion of any property, which is automatically

testable via use of typeclass resolution. In addition, a user can write P? to explicitly convert a property to a

boolean value.

Constrained Generation. Just like arbitrarySized and arbitrary are the methods of the GenSized and

Gen typeclasses for simple inductive types, arbSizedST and arbST are methods of GenSizedSuchThat and

GenSuchThat classes for constrained generation.

Class GenSizedSuchThat (A : Type) (P : A -> Prop) :=
{ arbitrarySizeST : nat -> G (option A) }.

Class GenSuchThat (A : Type) (P : A -> Prop) :=
{ arbitraryST : G (option A) }.

Given an inductive predicate P over some type A, these typeclasses provide access to bounded and unbounded

generators for elements of A that claim to satisfy P directly. However, since in general there may be no such such

elements (we will see an example in the next section) the result type of these methods is an option. Again, once

we have an instance of GenSizedSuchThat we can obtain automatically an instance of GenSuchThat by adding

the appropriate instance.

To chain di�erent monadic option actions we could use a bind like what we would get if we were using monad

transformers for the G and option monads:

Definition bindGenOpt' {A B} (m : G (option A)) (k : A -> G (option B)) :=
do! a <- m;
match a with
| Some a' => k a'
| None => ret None
end.

However, we can specialize the bind to achieve more control over local backtracking, which can lead to great

e�ciency gains in practice (Claessen et al. 2014). Instead of failing when the generator fails, we can try again,

until we reach a pre-speci�ed number of times; here, the implicit size parameter of the G monad.

Definition bindGenOpt {A B} (m : G (option A)) (k : A -> G (option B)) :=
let fix aux lim :=

match lim with
| O => ret None
| S lim' => do! a <- m;

match a with
| Some a' => k a'
| None => aux lim'
end

end in
sized aux.

We use doM! notation instead of the more common do! notation to chain actions in this way.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generating Good Generators for Inductive Relations • 1:7

3 GOOD GENERATORS, BY EXAMPLE
While automating generation for simple types is a much-needed addition to �ickChick, it still doesn’t su�ce for

testing a common type of interesting properties: properties with preconditions. �e main focus of this paper is to

derive correct generators for simply-typed data satisfying dependently-typed, inductive invariants. �is section

uses examples to showcase di�erent behaviors that our generation algorithm needs to exhibit; the algorithm itself

will be described more formally in the following section. In particular, we are going to give a few progressively

more complex inductive characterizations of trees, and detail how we can automatically produce a generator for

trees satisfying those characterizations.

Nonempty trees. Our �rst example is nonempty trees, i.e., trees that are not just leaves.

Inductive nonempty : Tree -> Prop :=
| NonEmpty : forall x l r, nonempty (Node x l r).

From a user’s perspective, we can quickly come up with a generator for nonempty trees: we just need to create

arbitrary x, l and r and combine them into a Node.

Definition gen_nonempty : G (option Tree) :=
do! x <- arbitrary;
do! l <- arbitrary;
do! r <- arbitrary;
ret (Some (Node x l r)).

But how could we automate this process?

We know that we want to generate a tree t satisfying nonempty; that means that we need to pick some

constructor of nonempty to satisfy. Since there is only one constructor, we only have one option, NonEmpty. By

looking at the conclusion of the NonEmpty constructor we know that t must be a Node. �is can be described

by a uni�cation procedure. Speci�cally, we introduce an unknown variable t (similar to logical variables in

logic programming, or uni�cation variables in type inference) plus one unknown variable for each universally

quanti�ed variable of the constructor (here x, l and r). We then proceed to unify t with (Node x l r). Since

there are no more constraints—we call them “hypotheses”—in NonEmpty, and since x, l and r are still completely

unknown, we instantiate them arbitrarily (using the Gen instance for natural numbers that is provided by default,

as well as the instance for Trees derived automatically in the previous section).

Complete Trees. For our second example of a condition, consider complete trees (also known as perfect trees):

binary trees whose leaves are all at the same depth. �e shape of a complete tree can be fully characterized by

its depth: a complete tree of depth zero is necessarily a Leaf, while a complete tree of depth n+1 is formed by

combining two complete trees of depth n into a Node. �is is re�ected in the following inductive de�nition:

Inductive complete : nat -> Tree -> Prop :=
| CompleteLeaf :

complete 0 Leaf
| CompleteNode : forall n x l r,

complete n l -> complete n r ->
complete (S n) (Node x l r).

Since complete has two parameters, we need to decide whether the derived generator produces all of them or

treats some of them as inputs, i.e., we need to assign modes to the parameters, in the sense of functional logic

programming. Let’s assume that that �rst parameter is an input to the generator (called in1), and we want to

generate trees t that satisfy complete in1 t. Once again, we introduce an unknown variable t (that we want

to generate), as well as an unknown variable for in1: since the generator will receives in1 as an argument, we

don’t know its actual value at derivation time!

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

We now have two constructors to choose from to try to satisfy, CompleteLeaf and CompleteNode. If we pick

CompleteLeaf we need to unify t with Leaf and in1 with O. Since t is unconstrained at this point, we can always

unify it with Leaf. By contrast since we don’t know the value of in1 at derivation time, we need to produce a

pa�ern match on it: if in1 is O, then we can proceed to return a Leaf, otherwise we can’t satisfy CompleteLeaf.

On the other hand, if we pick CompleteNode, we introduce new unknowns n, x, l and r for the universally

quanti�ed variables. We proceed to unify t with Node x l r and m with S n. Like before, we need to pa�ern match

on in1 to decide at runtime if it is nonzero; we bind n in the pa�ern match and treat it as an input from that

point onward. We then handle the recursive constraints on l and r, instantiating both the le� and right subtrees

with a recursive call to the generator we’re currently deriving. Finally, x remains unconstrained so we instantiate

it arbitrarily, like in the nonempty tree case.

Fixpoint gen_complete (in1 : nat) : G (option Tree) :=
match in1 with
| O => ret (Some Leaf)
| S n => doM! l <- gen_complete n;

doM! r <- gen_complete n;
do! x <- arbitrary;
ret (Some (Node x l r))

end.

�e complete inductive predicate is particularly well-behaved. First of all, for every possible input depth m
there exists some tree t that satis�es complete m t. �at will not necessarily hold in the general case. Consider

for example an inductive de�nition that consists of only the CompleteLeaf constructor:

Inductive half_complete : nat -> Tree -> Prop :=
| CompleteLeaf' : half_complete 0 Leaf.

Once again, we will need to pa�ern match on m, and, if m is zero, we can proceed as in the previous de�nition of

complete to return a Leaf. However, if m is nonzero there is nothing we can possibly do to return a valid tree

that satis�es half complete. �is is the reason why our generators return options of the underlying type:

Definition gen_half_complete (in1 : nat) : G (option Tree) :=
match in1 with
| O => ret (Some Leaf)
| _ => ret None

end.

Secondly, the usage of the input parameter serves as a structurally decreasing parameter for our �xpoint. In

the general case that is not necessarily true and we will need to introduce a size parameter (like we did in the

previous section for simple inductive types), as we will see in the next example.

Binary Search Trees. For a more complex example, consider binary search trees: for every node, each label in

its le� subtree is smaller than the node label while each label in the right subtree is larger. In Coq code, we could

characterize binary search trees whose elements are between two extremal values lo and hi with the following

code:

Inductive bst : nat -> nat -> Tree -> Prop :=
| BstLeaf : forall lo hi,

bst lo hi Leaf
| BstNode : forall lo hi x l r,

lo < x -> x < hi ->
bst lo x l -> bst x hi r ->
bst lo hi (Node x l r).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generating Good Generators for Inductive Relations • 1:9

A Leaf is always such a search tree since it contains no elements; a Node is such a search tree if its label x is

between lo and hi and its le� and right subtrees are appropriate search trees as well.

�e derived generator (tweaked a bit for readability) is as follows; we explain it below:

Definition gen_bst in1 in2 : nat -> G (option Tree) :=
let fix aux_arb size (in1 in2 : nat) : G (option (Tree)) :=

match size with
| O => ret (Some Leaf)
| S size' =>
backtrack [(1, ret (Some Leaf))

;(1, doM! x <- arbitraryST (fun x => in1 < x);
if (x < in2)? then
doM! l <- aux_arb size' in1 x;
doM! r <- aux_arb size' x in2;
ret (Some (Node x l r))

else ret None)]
end in

fun size => aux_arb size in1 in2.

�is generator is bounded: just like in the previous section, we use a natural number size to serve as a limit in

the depth of the derivation tree. When size is 0 we are only allowed to use constructors that do not contain

recursive calls to the inductive type we’re generating. In the binary search tree example, that means that we

can only choose the BstLeaf constructor. In that case, we introduce unknowns in1 and in2 that correspond

to the inputs to the generation, t that corresponds to the generated tree, as well as two unknowns lo and hi
corresponding to the universally quanti�ed variables of the BstLeaf case. We then try to unify in1 with lo,

in2 with hi, and t with Leaf. Since lo, hi and t are unconstrained, the uni�cation succeeds and our derived

generator returns Some Leaf.

When size is not zero, we have a choice. We can once again choose to satisfy the BstLeaf constructor,

which results in the generator returning Some Leaf. We can also choose to try to satisfy the recursive BstNode
constructor. A�er introducing unknowns and performing the necessary uni�cations, we know that the end

product of this sub-generator will be Some (Node x l r). We then proceed to process the constraints that are

enforced by the constructor.

To begin with, we encounter lo < x. Since lo is mapped to the input in1, we need to generate x such that x is

(strictly) greater than in1. We do that by invoking the typeclass method arbitrarySTfor generating arbitrary

natural numbers satisfying the corresponding predicate. Now, when we encounter the x < hi constraint both x
and hi are instantiated so we need to check whether or not the constraint holds. �e notation p? looks for a Dec
instance of p to serve as the boolean condition for the if statement. If it does, we proceed to satisfy the rest of

the constraints by recursively calling our generator. If not, we can no longer produce a valid binary search tree

so we must fail, returning None.

One additional detail in the generator is the use of the backtrack combinator instead of frequency to choose

between di�erent constructor options. �e backtrack combinator operates exactly like frequency to make the

�rst choice—choosing a generator with type G (option A) based on the induced discrete distribution. However,

should the chosen generator fail, it backtracks and chooses a di�erent generator until it either exhausts all options

or the backtracking limit.

Nonlinearity. As a last example, we will use an arti�cial characterization of “good” trees to showcase one last

di�culty that arises in the context of dependent inductive types: non-linear pa�erns.

Inductive goodTree : nat -> nat -> Tree -> Prop :=
| GoodLeaf : forall n, goodTree n n Leaf.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

In this example, goodTree in1 in2 t only holds if the tree t is a Leaf and in1 and in2 are equal, as shown by

the non-linear occurrence of n in the conclusion of GoodLeaf. If we assume that both in1 and in2 will be inputs

to our generator, then this will translate to an equality check in the actual generator.

Fixpoint gen_good (in1 in2 : nat) size : G (option Tree) :=
match size with
| 0 => backtrack [(1, if in1 = in2 ? then ret (Some Leaf)

else ret None)]
| S _ => backtrack [(1, if in1 = in2 ? then ret (Some Leaf)

else ret None)]
end.

We can see the equality check in1 = in2 ? in the derived generator above. We can also see that the structure

of the generator is similar to the one for binary search trees, even though it seems unnecessary. In particular,

we encounter calls to backtrack with a single element list (which is equivalent to just the inner generator), as

well as an unnecessary match on the size parameter with duplicated branch code. �is uniform treatment of

generators facilitates the proof term generation of Section 5. In addition, we could obtain the simpler and slightly

more e�cient generators by a straight-forward optimization pass.

4 GENERATING GOOD GENERATORS
We now describe the generalized narrowing algorithm more formally.

4.1: Input. Our generation procedure targets simply-typed inductive data that satisfy dependently-typed

inductive relations of a particular form. More precisely, we take as input an inductively de�ned relation R with p
arguments of types A1,A2, · · · ,Ap , where each Ai is a simple inductive type. Each constructorC in the de�nition

of R takes as arguments some number of universally quanti�ed variables (x) and some preconditions—each

consisting of an inductive predicate S applied to constructor expressions (only consisting of constructors and

variables) e; its conclusion is R itself applied to constructor expressions e1, e2, · · · , ep .

Inductive R : A1 → A2 → · · · → Ap → Prop :=

. . . | C : ∀ x , S e → R e1 e2 · · · ep | . . .

We demonstrate the applicability of this class in practical situations in Section 7 and discuss possible extensions

to this format as future work (Section 9).

4.2: Unknowns and Ranges. We �rst need to formalize unknowns, which are used to keep track of sets of potential

values that variables can take during generation, similar to logic variables in functional logic programming. One

important di�erence is that sometimes unknowns will be provided as inputs to the generation algorithm; this

means that they can only take a single �xed value, but that value is not known at derivation time. Looking back

at the complete trees example, we knew that in1 would be an input to gen complete. However, when deriving

the generator we could not make any assumptions about in1: we could not freely unify it with O for instance—we

had to pa�ern match against it.

We represent sets of potential values as ranges.

r := undefτ | �xed | u | C r

�e �rst option for the range of an unknown is unde�ned (parameterized by a type). �e unknowns we want to

generate (such as tree, in the binary search tree example) start out with unde�ned ranges. On the other hand, a

range can also be �xed, signifying that the corresponding unknown’s value serves as an input at runtime (in1
and in2 in the binary search tree example). Next, a range of an unknown can also be a di�erent unknown, to

facilitate sharing. Finally, a range can be a constructor C fully applied to a list of ranges.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generating Good Generators for Inductive Relations • 1:11

for each (u,C p) in pa�erns:
match u with
| C p ⇒ …

| ⇒ ret None

for each (u1,u2) in equalities:
ifu1 = u2 then …

else ret None

for each constraint (e.g., x < hi):

do! x <- arbST ... (* instantiations *)

if (x < hi)? then ... (* checks *)

else ret None

Final result:

ret (Some ...)

Fig. 1. General Structure of each sub-generator

We use a map from unknowns to ranges, wri�en κ, to track knowledge about unknowns during generation.

For each constructor C , we initialize this map with the unknowns that we want to generate mapped to undefτ
appropriate types τ , the rest of the parameters to R mapped to �xed, and the universally quantii�ed variables ofC
also mapped to appropriate unde�ned ranges. For instance, to generate a tree such that bst in1 in2 tree holds

for all in1 and in2, the initial map for the BstNode constructor would contain in1 and in2 mapped to �xed,

tree mapped to undefTree, and the unknowns lo, hi, x, l and r introduced by BstNode mapped to corresponding

unde�ned ranges:

κ := (in1 7→ �xed) ⊕ (in2 7→ �xed)
⊕ (tree 7→ undefTree)
⊕ (lo 7→ undefnat) ⊕ (hi 7→ undefnat) ⊕ (x 7→ undefNat) ⊕ (l 7→ undefTree) ⊕ (r 7→ undefTree)

4.3: Overview. We have already hinted at the general structure of the generation algorithm in Section 3. Let’s

assume in1 . . . inn will be the inputs to the generator and that out1 . . . outm will be the outputs. We then

produce a bounded generator that takes in1 through inn as inputs, as well as an additional natural number

parameter size:

Fixpoint aux_arb size in1 ... inn :=
match size with
| O => backtrack [... (wC, дC) ...]
| S size' => backtrack [... (wC, дC) ...]
end.

Both when size is zero and when it is not, we use backtrack to choose between a number of generators.

In the la�er case, we have one sub-generator дC for each constructor C . �e former case is nearly the same,

except that the sub-generators that perform recursive calls to aux arb are �ltered out of the list. �e weights to

backtrack (wc) can be chosen by the user via lightweight annotations, similar to the local distribution control of

Luck (Lampropoulos et al. 2017), as we will see in the evaluation section (7.2). �e general structure of each дC
appears in Figure 1.

�e outer component of every sub-generator will be a sequence of pa�ern matches: uni�cation will sometimes

signify that we need to match an unknown against a pa�ern. For instance, in the case of complete trees we

needed to match in1 against O. Each such pa�ern match has two branches: one that is considered successful and

allows generation to continue; and one that catches all other possible cases and fails (returns None).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

type Pa�ern = Unknown | C Pa�ern

record UnifyState =

constraints : Map Unknown Range
equalities : Set (Unknown,Unknown)
pa�erns : List (Unknown, Pa�ern)
unknowns : Set Unknown

type Unify a = UnifyState → option (a,UnifyState)

update : Unknown→ Range → Unify ()
update u r = λs .

let κ = constraints(s) in

Some ((), s{constraints ← κ[u 7→ r]})

equality : Unknown→ Unknown→ Unify ()
equality u1 u2 = λs .

let eqs = equalities(s) in

Some ((), s{equalities ← {u1 = u2}
⋃

eqs})

pa�ern : Unknown→ Pa�ern→ Unify ()
pa�ern u p = λs .

let ps = pa�erns(s) in

Some ((), s{pa�erns ← (u,p) :: ps})

fresh : Unify Unknown
fresh = λs .

let us = unknowns(s) in

let u = fresh unknown (us) in

Some (u, s{unknowns ← u
⋃

us})

Fig. 2. Unification Monad

A�er nesting all possible matches, we need to ensure that any equalities raised by the uni�cation hold. In the

successful branch of the innermost match (if any), we start a sequence of if-equality-statements. For example, in

the case of good trees that were demonstrating non-linear pa�erns, we checked that in1 = in2 before continuing

with the generation.

�e equalities are followed by a sequence of instantiations and checks that are enforced by the hypotheses of

C . Looking back at the binary search tree example, we needed to generate a random x such that x was greater

than the lower bound in1; we also needed to check whether that generated x was less than the upper bound in2.

Finally, we combine all the unknowns that we wanted to generate for in a Some to return them as the �nal

result. Note that, just like in the nonEmpty trees example, we might need to perform a few more instantiations if

some unknowns necessary remain completely unconstrained.

4.4: Uni�cation. �e most important component of the derivation algorithm is the uni�cation. For every

constructor C with conclusion R e1 e2 · · · ep , we convert each ei to a range and unify it with the corresponding

unknown argument of R. For instance, in the binary search tree example, we would unify the in1, in2, and tree
unknowns with lo, hi, and Node x l r respectively.

�e entire uni�cation algorithm is wri�en inside a state-option monad, presented in Figure 2. To keep track

of information about unknowns we use a Map from Unknowns to Ranges; to track necessary equalities—like in

the good tree of the previous section—we keep a Set of pairs of unknowns; to produce the necessary pa�ern

matches—like in complete trees—we gather them in a List; �nally, to be able to produce fresh unknowns on

demand, we keep all existing unknowns in a Set.
Each of the four components of the state can be modi�ed through speci�c monadic actions. �e update action

sets the range of an unknown; the equality action registers a new equality check; pa�ern adds a pa�ern match;

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generating Good Generators for Inductive Relations • 1:13

unify u1 u2 =

return () if u1 = u2

r1 ← κ[u1]; r2 ← κ[u2]; unifyR (u1, r1) (u2, r2) otherwise

unify (C1 r11 · · · r1n) (C2 r21 · · · r2m) = unifyC (C1 r11 · · · r1n) (C2 r21 · · · r2m)
unify u1 (C2 r21 · · · r2m) = r1 ← κ[u1]; unifyRC (u1, r1) (C2 r21 · · · r2m)
unify (C1 r11 · · · r1n) u2 = r2 ← κ[u2]; unifyRC (u2, r2) (C1 r11 · · · r1n)

unifyR (u1, undefτ) (u2, r) = update u1 u2

unifyR (u1, r) (u2, undefτ) = update u2 u1

unifyR (u1,u
′
1
) (u2, r) = unify u ′

1
u2

unifyR (u1, r) (u2,u
′
2
) = unify u1 u

′
2

unifyR (,C1 r11 · · · r1n) (,C2 r21 · · · r2m) = unifyC (C1 r11 · · · r1n) (C2 r21 · · · r2m)
unifyR (u1,�xed) (u2,�xed) = equality u1 u2; update u1 u2

unifyR (u1,�xed) (,C2 r21 · · · r2m) = match u1 (C2 r21 · · · r2m)
unifyR (,C1 r11 · · · r1n) (u2,�xed) = match u2 (C1 r11 · · · r1n)

unifyC (C1 r11 · · · r1n) (C2 r21 · · · r2m) =

fold unify (r1i , r2i) if C1 = C2 and n =m

⊥ otherwise

unifyRC (u, undefτ) (C2 r21 · · · r2m) = update u1 (C2 r21 · · · r2m)
unifyRC (u,u ′) (C2 r21 · · · r2m) = r ← κ[u ′]; unifyRC (u ′, r) (C2 r21 · · · r2m)
unifyRC (u,�xed) (C2 r21 · · · r2m) = match u (C2 r21 · · · r2m)
unifyRC (u,C1 r11 · · · r1n) (C2 r21 · · · r2m) = unifyC (C1 r11 · · · r1n) (C2 r21 · · · r2m)

match u (C r1 · · · rn) = p ← mapM matchAux r ; pa�ern u (C p)

matchAux (C r) = p ← mapM matchAux r ; return (C p)
matchAux u = r ← κ[u]; case r of undefτ ⇒ update u �xed

| �xed ⇒ u ′ ← fresh; equality u ′ u; update u ′ u; return u ′

| u ′ ⇒ matchAux u ′

| C r ⇒ p ← mapM matchAux r ; return (C p)

Fig. 3. Unification algorithm

and fresh generates and returns a new unknown. We write κ[u] for the action that looks up an unknown, and we

write ; for the monadic bind operation and ⊥ to signify failure (the constant action λs . Nothing).

�e main uni�cation procedure, unify, is shown in Figure 3. At the top level, we only need to consider three

cases for uni�cation—unknown-unknown, constructor-constructor, and unknown-constructor—because the

e1 through ep are constructor expressions containing only constructors and variables, which are translated to

constructor ranges and unknowns respectively. Most cases are unsurprising; the main important di�erence from

regular uni�cation is the need to handle potentially �xed—but not statically known—inputs.

Case ui 7→ undef : If the range of either of the unknowns, say u1, is unde�ned, we update κ so that u1 points

to u2 instead. From that point on, they correspond to exactly the same set of potential values. Consider the

goodTree example of the previous section, where in the initial map for GoodLeaf we have unknowns in1 and

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

in2 as inputs to the generator, tree as the unknown being generated, and n introduced by GoodLeaf:

κ := (in1 7→ �xed) ⊕ (in2 7→ �xed) ⊕ (tree 7→ undefTree) ⊕ (n 7→ undefnat)

We �rst unify in1 with n; since n 7→ undefnat in the initial map, the uni�cation updates that map such that

n 7→ in1.

Caseui 7→ u ′i : If either unknown maps to another unknown we recursively try to unify using the new unknown

as input. For example, when we try to unify in2 with n in the updated map for GoodLeaf, we recurse and a�empt

to unify in1 with in2.

Case u1 7→ C1 r11 · · · r1n and u2 7→ C2 r21 · · · r2m : If both ranges have some constructor at their head, there

are two possibilities: either C1 , C2, in which case the uni�cation fails, or C1 = C2 and n =m, in which case we

recursively unify r1i with r2i for all i . We maintain the invariant that all the ranges that appear as arguments to

any constructor contain only constructors and unknowns, which allows us to call unify and reduce the total

number of cases.

�e last two cases, dealing with �xed ranges, are the most interesting ones.

Case u1 7→ �xed and u2 7→ �xed: If both u1 and u2 map to a �xed range in κ, then we need to assert that

whatever the values of u1 and u2 are, they are equal. �is will translate to an equality check between u1 and u2

in the derived generator. We record this necessary check using equality and proceed assuming that the check

succeeds, se�ing one unknown’s range to the other. Continuing with the goodTree example, when we a�empt

to unify in1 and in2, both have �xed ranges. �is results in the equality check n1 = n2 that appears in gen good.

Case ui 7→ �xed and uj 7→ C r1 · · · rn : �e last possible con�guration pairs a �xed range against a constructor

range C r1 · · · rn . �is will result in a pa�ern match in the derived generator. We saw such an example in the

previous section in the form of complete’. One branch of the match will be against a representation of the range

C r1 · · · rn and lead to success, while the other branch will terminate the generation with failure in all other

cases. To match against C r1 · · · rn , we will need to convert all of the ranges r to pa�erns p, while dealing with

potentially non-linear appearances of unknowns inside the constructor range. �is is done by traversing the

ranges r , applying a helper function matchAux to each, and logging the result in the state monad using pa�ern.

If r is itself a constructorC , we need to recursively traverse its ranges, convert them to pa�erns p and combine

them into a single pa�ernC p. If r is an unknown u, we look up its range inside the current map. If it is unde�ned

we can use u as the bound variable in the pa�ern; we update the binding of u in the map to be �xed, as it will be

extracting information out of the �xed discriminee. On the other hand, if the range is �xed, we need to create a

fresh unknown u ′, use that as the pa�ern variable and then enforce an equality check between u and u ′. Finally,

the unknown and constructor cases result in appropriate recursions.

4.5: Handling hypotheses. Another important part of the derivation of a generator for a single constructor C
is handling all of its hypotheses. Given a hypothesis of the form S e1 e2 · · · em , we once again identify a few

di�erent cases.

If there is exactly one unde�ned variable amongst the ei , we need to instantiate it. �at translates either to

a call to the generic arbitraryST function, or to a recursive call to the currently derived generator. �e bst

predicate provides examples of both: a�er the uni�cation is complete, the map κ will have the following form:

κ := (in1 7→ �xed) ⊕ (in2 7→ �xed) ⊕ (tree 7→ Node x l r)
⊕ (lo 7→ in1) ⊕ (hi 7→ in2) ⊕ (x 7→ undefNat) ⊕ (l 7→ undefTree) ⊕ (r 7→ undefTree)

When processing the hypothesis lo < x, the unknown lo maps to in1which in turn is �xed, while x is still

unde�ned. �us, to generate x such that lo<x holds, we need to invoke the arbitrarySTmethod of GenSuchThat
for (fun x => in1 < x). A�er processing this constraint, the range of x becomes to �xed: we know that it has

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generating Good Generators for Inductive Relations • 1:15

a concrete value but not what it is. For all intents and purposes it can be treated as if it was an input to the

generation from this point on.

κ := (in1 7→ �xed) ⊕ (in2 7→ �xed) ⊕ (tree 7→ Node x l r)
⊕ (lo 7→ in1) ⊕ (hi 7→ in2) ⊕ (x 7→ �xed) ⊕ (l 7→ undefTree) ⊕ (r 7→ undefTree)

�erefore, when processing the bst lo x l, only l is unconstrained. However, since generating l such that bst
lo x l holds is exactly the generation mode we are currently deriving, we just make a recursive call to aux arb
to generate l.

�e second possibility for a hypothesis is that all expressions ei are completely �xed, in which case we can

only check whether this hypothesis holds. For example, when we encounter the x < hi constraint, both x and hi
have already been instantiated and therefore we need to check whether x < hi holds at runtime, using the dec
method of the decidability typeclass.

A �nal possibility is that a hypothesis could contain multiple unde�ned unknowns. Deciding which of them to

instantiate �rst and how many at a time is a ma�er of heuristics. For example, if in the constraint bst lo hi t, if

all of lo, hi and t were unde�ned, we could pick to make a call to arbitraryST bst, or we could instantiate

arguments one at a time. In our implementation, we prioritize recursive calls whenever possible; we leave further

exploration and comparison of di�erent heuristics as future work.

4.6: Assembling the Final Result. A�er processing all hypotheses we have an updated constraint map κ, where,

compared to the constraint map a�er the uni�cation, some unknowns have had their ranges �xed as a result of

instantiation. However, there might still be remaining unknowns that are unde�ned. Such was the case for the

nonEmpty tree example where x, l and r were all still unde�ned. �us, we must iterate through κ, instantiating

any unknowns u for which κ[u] = undef . To complete the generator дC for a particular constructor, we look up

the range of all unknowns that are being generated, convert them to a Coq expression, group them in a tuple and

return them.

4.7: Pu�ing it All Together. A formal presentation of the derivation for a single constructor is shown in Figure 4.

Here, for simplicity of exposition, we allow only a single output out . In general, even though our implementation

of the algorithm deals with a single output as well, the algorithm presented in this section can handle an arbitrary

number of outputs.

Given an inductive relation R and a particular constructorC : ∀ x , S e → P e1 e2 · · · ep , our goal is to generate

out such that for all in, the predicate R e ′
1
e ′

2
. . . e ′p holds via constructor C , where the e ′s are constructor

expressions containing only variables in {out }
⋃
in. First, we create an initial map κ as described in Paragraph 4.2.

We use it to construct an initial state st for the uni�cation monad (Paragraph 4.4), where the pa�erns and

equalities �elds are empty, while the unknowns �eld holds in, out and all universally quanti�ed variables of C .

We then evaluate a sequence of monadic actions, each one a�empting to unify ei with its corresponding e ′i . If

at any point the uni�cation fails, the constructor C is not inhabitable and we fail. If it succeeds, we proceed to

produce all of the nested pa�ern matches and equalities in order (emit pa�erns and emit equalities), as described

Paragraph 4.3. A�erwards, we process all the hypotheses using emit hypotheses as described in Paragraph 4.5,

emi�ing instantiations or checks as appropriate, while updating the constraint set κ. Finally, we complete the

generation by instantiating all unknowns that are still unde�ned and constructing the result by reading o� the

range of out in the �nal constraint set 4.7.

5 GENERATING CORRECTNESS PROOFS
�is section describes how we automatically generate proofs that our generators are sound and complete with

respect to the inductive predicates they were derived from. Following the translation validation approach of Pnueli

et al. (1998), rather than proving once and for all that every generator we build is guaranteed to be correct, we build

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

let κ = in 7→ �xed ⊕ out 7→ undefτout ⊕ x 7→ undefτx in

let st =

constraints = κ
equalities = ∅

pa�erns = []

unknowns = in
⋃
{out }

⋃
x

in

case runUnifyState {unify e1 e
′
1
; unify e2 e

′
2
; . . . ; unify ep e

′
p } st of

| None → ret None
| Some (st ′, ()) → emit pa�erns (pa�erns st ′) (equalities st ′) (constraints st ′)

emit pa�erns [] eqs κ = emit equalities eqs κ
emit pa�erns ((u,p) :: ps) eqs κ =

matchu with
| p => emit pa�erns ps eqs κ

emit equalities [] κ = emit hypotheses (S e) κ
emit equalities ((u1,u2) :: eqs) κ =

if (u1=u2)? then emit equalities eqs κ
else ret None

emit hypotheses [] κ = �nal assembly κ
emit hypotheses ((S e) :: ss) κ =

if ∀ u ∈ e . κ[u] , undef then

if (S e)? then emit hypotheses ss κ
else ret None

else let {u1, . . . ,uk } = {u ∈ e | κ[u] = undef } in

do!u1 <- arbitrary;
. . .
do!uk−1 <- arbitrary;
emit �nal call uk
emit hypotheses ss κ[ui ← �xed]

k
i=1

emit �nal call uk =
if uk ∼ out then doM! uk <- aux arb size’

else doM! uk <- arbitraryST (λuk . S e)

�nal assembly κ =
let {u1, . . . ,uf } = {u | κ[u] = undef } in

let κ ′ = κ[ui ← �xed]
k
i=1

in

do! u <- arbitrary;
ret(Someemit result κ ′ out κ ′[out])

emit result κ u u ′ = emit result κ u ′ κ[u ′]
emit result κ u �xed = u
emit result κ u (C r1 . . . rk) =

C (emit result κ r1) . . . (emit result κ rk)

Fig. 4. Derivation of one case of a generator дC (for a single constructorC), in pseudo-code. Boxes delimit “quasi-quoted” Coq
generator code to be emi�ed. Inside boxes, italic text indicates “anti-quoted” pseudo-code whose result is to be substituted
in its place.

a proof term certifying that each speci�c generator is correct at the same time as we build the generator itself. In

fact, the same algorithm that is used to compile generators from inductive predicates is also used to compile their

corresponding proofs of correctness. We leverage an existing veri�cation framework for �ickChick, designed to

allow users to (manually) prove soundness and completeness of generators built from �ickChick’s low-level

primitives (Paraskevopoulou et al. 2015).

�is veri�cation framework assigns semantics to each generator by mapping it to its set of outcomes, i.e. the

elements that have non-zero probability of being generated. �is enables proving that all the elements in a set of

outcomes satisfy some desired predicate (soundness), and that all the elements that satisfy the predicate are in

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generating Good Generators for Inductive Relations • 1:17

the set of outcomes (completeness). To ease reasoning about user-de�ned generators, �ickChick provides a

library of lemmas that specify the behavior of built-in combinators.

We leverage this framework to specify the set of outcomes of derived generators: given an inductive relation

and some input parameters, it should be exactly the set of elements that satisfy the inductive relation. Automatic

generation of proofs is analogous to generation of generators and is done using the same algorithm. Just as

generators are derived by composing generator combinators that we select by examining the structure of the

inductive predicate, proofs are derived by composing the corresponding correctness lemmas that are provided by

�ickChick. We glue these proof components together in order to obtain proofs for unsized generators using

typeclass resolution, just as we did to obtained unsized generators. To enable this, we extend the typeclass

infrastructure of �ickChick to encode properties of generators as typeclasses and we automatically generate

instances of these classes for the derived generators.

Subsection 5.1 brie�y describes �ickChick’s veri�cation framework, focusing on the proof generation ma-

chinery. 5.2 outlines the structure of the generated proofs and describes all the terms, de�nitions, and proofs

that we need to generate in order to obtain the top-level correctness proof. 5.3 describes the extensions to the

typeclass infrastructure of �ickChick that we made in order to facilitate proof generation.

5.1 Verification Framework
�ickChick assigns semantics to generators by mapping them to the set of values that have non-zero probability

of being generated. Recall from section 2.1 that generators are functions mapping a random seed and a natural

number to an element of the underlying type. �e semantics of a generator for a given size parameter is exactly

the values that can be generated for this particular size parameter.

~д�s = { x | ∃r , д s r = x }

We can then de�ne the semantics of a generator by taking the union of these sets over all possible size parameters.

~д� =
⋃
s ∈N

~д�s

It may seem as though we could have skipped the �rst de�nition and inlined its right-hand side in the second.

However, by separating out the �rst de�nition we can additionally characterize the behavior of generators with

respect to the size parameter. For instance, we can de�ne the class of size-monotonic generators, whose set of

outcomes for a given size parameter is included to the set of outcomes for every larger size parameter.

sizeMonotonic д
def

= ∀s1 s2, s1 ≤ s2 → ~д�s1
⊆ ~д�s2

Another useful class of generators is bound-monotonic generators, i.e., bounded generators that behave mono-

tonically with respect to their bound parameter. Recall that bounded generators are parameterized by a natural

number which bounds the size of the generated terms.

boundMonotonic д
def

= ∀s s1 s2, s1 ≤ s2 → ~д s1�s ⊆ ~д s2�s

Together, these characterizations allow us to obtain convenient speci�cations for combinators. To support

reasoning about size-monotonicity properties, �ickChick encodes them as typeclasses and provides lemmas

(encoded as typeclass instances) that various generator combinators are size monotonic if all the involved

generators are size monotonic. For instance, here is the lemma for monadic binding:

sizeMonotonic д ∀x ∈ ~д�, sizeMonotonic (f x)

sizeMonotonic (д >>= f)
monBind

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

�ere is a similar lemma that guarantees that sized is size monotonic but it requires both bound and size

monotonicity for the bounded generator.

sizeMonotonic д ∀s, boundMonotonic (д s)

sizeMonotonic (sized д)
monSized

To prove that sized is monotonic, we also need a second premise that requires the bounded generator to be bound

monotonic. �is is because sized will use the internal size parameter of G to instantiate the bound parameter of

the generator.

To support reasoning about generators, �ickChick provides a library of lemmas that specify the semantics of

generator combinators and can be used to compositionally verify user de�ned generators. �ese lemmas can be

seen as a proof theory for the G monad; one can apply them in order to build derivations that computations in

this monad are correct.

�e simplest example of a correctness lemma is the one of ret. Unsurprisingly, the semantics of the return of

the G monad is just a singleton set.

~ret x� = { x }
semRet

�e lemma for monadic bind is more interesting. In particular, the expected speci�cation that composes the set

of outcomes of the two generators using an indexed union is true, but under the additional requirement that the

generators involved are size monotonic.

sizeMonotonic д ∀x ∈ ~д�, sizeMonotonic (f x) ~д� = s ∀x ∈ s, ~ f x� = h x

~д >>= f � =
⋃
x ∈s

h x
semBind

�e intuition behind this requirement (Paraskevopoulou et al. 2015) is that the set on the le�-hand side of semBind

contains elements that are generated when the same size parameter is threaded to both generators, whereas

the right-hand side indexes over elements that have been generated by д when the size parameter ranges over

all natural numbers. To address this mismatch, we use monotonicity. In particular, to obtain the right to le�

inclusion we can pick a witness for the size parameter that is greater than both of the size parameters we obtain

as witnesses from the hypothesis, such as their sum (or max) and then use monotonicity to prove the inclusion.

�e correctness lemma for sized is crucial for proof generation, as it gives us proofs about unbounded

generators. It states that the semantics of the combinator is the union of the sets of outcomes of the bounded

generator indexed over all natural numbers.

boundMonotonic д (∀x ∈ N, sizeMonotonic (д x)) ∀x ∈ N, ~д x� = f x

~sized д� =
⋃
x ∈N

f x
semSized

�e lemma requires that the bounded generator is size monotonic for all bounds and, in addition, that it is

monotonic in the bound parameter itself. �ese conditions are required because the set on the le�-hand size of

the speci�cation contains elements that are generated from д using same number for the size and the bound,

whereas in the right-hand side the bound and the size parameter range independently over natural numbers. As

in the case of the monadic bind, we can work around this mismatch using monotonicity.

5.2 Proof Generation
�is section describes the proof terms that we generate for each derived generator. To describe the structure

of the constructed proof terms, we will use the generator for binary search trees presented in 3 as a running

example. �e terms themselves have the same structure as the generators and are generated using using the

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generating Good Generators for Inductive Relations • 1:19

same algorithms, replacing the generator building blocks with their proof counterparts. For brevity, we assume a

single output of the generation procedure; we can easily encode multiple outputs using tuples.

Top-level proof. Let R : A → Prop be an inductive predicate and д : option A a derived generator for this

predicate. We want to generate proofs that д is sound and complete with respect to this predicate, i.e., that the

set of outcomes of the generator is exactly the elements that satisfy P :

isSome ∩ ~д� = Some[P]

Since our generators can fail (their return type is option A), we need to take the image of P under Some. We

also remove None from the set of outcomes of д by intersecting it with isSome, i.e., the set of elements whose

outermost constructor is Some.

In the case of binary search trees, this amounts to saying that the set of outcomes of the unbounded generator

(which we obtain using sized; it is automatically derived by typeclass resolution) is exactly the set of trees that

satisfy the bst predicate for some given inputs.

∀ in1 in2, isSome ∩ ~sized (gen bst in1 in2)� = Some[bst in1 in2]

As expected, to generate proofs about unbounded generators we have to �rst generate proofs about bounded

generators. �ese proofs can be then li�ed using the speci�cation of sized that we saw in the previous section.

Proofs for Bounded Generators. Before deriving correctness proofs for bounded generators, we �rst need to

se�le on a speci�cation. To this end, for each inductive de�nition for which we derive a generator, we generate

automatically an operator, which we call iter, that maps a natural number to the set of elements that inhabit the

inductive relation and whose proof has height less or equal to the given natural number. �is set will serve as a

speci�cation for the bounded generator for a given size parameter.

�is operator has exactly the same shape as the generator, and it is obtained using the same algorithm; the

only thing that changes is that, instead of using the combinators of the G (option −) monad, we use those of the

set monad. For instance, in the case of the bst predicate the iter operator looks like the following:

iter bst in1 in2 s =

{ Leaf } if s = 0

{ Leaf } ∪
⋃

x>in1
if x < in2 then if s = s ′ + 1⋃

l ∈(iter bst in1 x s ′)
⋃

r ∈(iter bst x in2 s ′) { Node x l r }
else ∅

�e parallels with the generator stand out: we can obtain this by replacing ret (Some −) with the singleton set

(i.e., the return of the set monad), bind with indexed union (i.e., the bind of the set monad), and ret None with

empty set (i.e., the fail action of the set monad).

Using iter we can accurately characterize the set of outcomes of a bounded generator:

isSome ∩ ~д n� = Some[iter n]

�e proof term for this proposition also has the same structure as the generator, but this time, instead of monadic

combinators, we use the corresponding proof rules. Since we only care to specify the Some part of the set of

outcomes of the generators, we can use slightly modi�ed proof rules that require a weaker notion of generator

monotonicity. In particular, the new rules only require the generator to be monotonic in the Some part of its set

of outcomes. �is is captured by the following two de�nitions.

sizeMonotonicOpt д
def

= ∀s1 s2, s1 ≤ s2 → isSome ∩ ~д�s1
⊆ isSome ∩ ~д�s2

boundMonotonicOpt д
def

= ∀s s1 s2, s1 ≤ s2 → isSome ∩ ~д s1�s ⊆ isSome ∩ ~д s2�s

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:20 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

Using the above de�nitions we can formulate the alternative proof rules. Below are examples of reformulated

lemmas for bind and size.

sizeMonotonicOpt д
∀x , sizeMonotonicOpt (f x) ~д� = s ∀x , isSome ∩ ~ f x� = h x

isSome ∩ ~д >>= f � =
⋃
x ∈s

h x
semOptBind

boundMonotonicOpt д ∀n ∈ N, sizeMonotonicOpt (д n)) ∀n, isSome ∩ ~д n� = h n

isSome ∩ ~sized д� =
⋃
n∈N

h n
semOptSized

Our goal is to li� speci�cation from bounded to unbounded generators using the corresponding lemma for

sized. To that end, we need a proof that the union of these sets produced by iter over all natural numbers is

exactly the set of elements that satisfy the predicate.⋃
n∈N

iter n = P

�e above proof also requires us to generate a proof that these sets operators are monotonic in the size parameter.

∀n1 n2, n1 ≤ n2 → iter n1 ⊆ iter n2

Monotonicity proofs. As described above, in order to produce correctness proofs we need to also produce

monotonicity proofs for the unbounded generators. �ese proofs are used in both constructing the correctness

proofs for bounded combinators, as well as li�ing them to unbounded ones. In order to be able to use the

generators as individual components in other derived generators that come with correctness proofs, we also li�

size monotonicity proofs to unbounded generators. As in previous cases, this is done using the corresponding

lemma for sized. Again, we automate this process by providing the appropriate typeclass instances. Note that

the choice to generate proofs of this weaker notion of monotonicity is not essential; we could have generated

proofs of full monotonicity instead. However, we opted for this weaker notion as it signi�cantly simpli�es the

proof of bound monotonicity.

5.3 Typeclasses for Proof Generation
As we did for generators in Section 4, we rely on typeclasses to connect individual proof components and

li� speci�cations to unbounded generators. In this subsection we describe the extensions to the typeclass

infrastructure of �ickChick presented in Section 2, which are needed in order to achieve this. We use Coq

notation so that we can display the actual typeclass de�nitions; the notation :&: denotes set intersection and the

notation @: the image of a function over some set.

Monotonicity. First we extend the typeclass hierarchy to encode size and bound monotonicity properties.

Class SizeMonotonicOpt {A} (g : G (option A)) :=
{ monotonic_opt :

forall s1 s2,
s1 <= s2 -> isSome :&: semGenSize g s1 \subset isSome :&: semGenSize g s2 }.

Class BoundMonotonicOpt {A} (g : nat -> G (option A)) :=
{ sizeMonotonicOpt :

forall s s1 s2,
s1 <= s2 ->
isSome :&: semGenSize (g s1) s \subset isSome :&: semGenSize (g s2) s }.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generating Good Generators for Inductive Relations • 1:21

We automatically generate proofs that derived bounded generators are bound and size monotonic by explicitly

constructing the proof term and we automatically create instances of these classes. Size monotonicity can then

be derived for unbounded generators using the following provided instance.

Instance SizeMonotonicOptOfBounded (A : Type) (P : A -> Prop)
(H1 : GenSizedSuchThat A P)
(H2 : forall s : nat, SizeMonotonicOpt (arbitrarySizeST P s))
(H3 : BoundMonotonicOpt (arbitrarySizeST P))

: SizeMonotonicOpt (arbitraryST P).

Given a GenSizedSuchThat instance for a predicate P (H1 above), which provides access to a constrainted

bounded generator arbitrarySizeST P, and instances of size and bound monotonicity for this generator (H2 and

H3), we can obtain an instance of size monotonicity for unbounded generator for this predicate, arbitraryST P,

which is also obtained automatically by the corresponding instance.

Set Operators. To express the correctness property of generators we introduce a typeclass that gives a generic

interface to predicates which are equipped with an iter operator.

Class Iter {A : Type} (P : A -> Prop) :=
{ iter : nat -> set A;
iter_mon : forall n1 n2, n1 <= n2 -> iter n1 \subset iter n2;
iter_spec : \bigcup_(n : nat) (iter n) ≡ P }.

Correctness. We can de�ne a subclass of the above class, which is used to characterize bounded generators that

are correct with respect to a predicate.

Class BoundedSuchThatCorrect {A : Type} (P : A -> Prop) {Iter A P}
(g : nat -> G (option A)) :=

{ boundedCorrect : forall s, isSome :&: semGen (g s) ≡ Some @: (iter s) }.

In the above, we are requiring that P is an instance of the Iter class in order to be able to use iter to express

the correctness property. Following our usual practice, we also de�ne a class for correct unbounded generators.

Class SuchThatCorrect {A : Type} (P : A -> Prop) (g : G (option A)) :=
{ correct : isSome :&: semGen g ≡ Some @: P }.

As before, we automatically generate instances for correctness of bounded generators by proving the proof terms,

and we then li� them to unbounded generators by adding the corresponding instance.

Instance SuchThatCorrectOfBounded (A : Type) (P : A -> Prop)
(H1 : GenSizedSuchThat A P)
(H2 : Iter P)
(H3 : forall s : nat, SizeMonotonicOpt (arbitrarySizeST P s))
(H4 : BoundMonotonicOpt (arbitrarySizeST P))
(H5 : SizedSuchThatCorrect P (arbitrarySizeST P))

: SuchThatCorrect P (arbitraryST P).

�e above instance is similar to the one for monotonicity but it additionally requires an instance for correctness

of the unbounded generator (H5). It also requires an instance of the Iter class for P (H2). �is instance is required

as an (implicit) argument to the instance of correctness and also in the proof itself as it provides the speci�cation

of iter.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:22 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

6 IMPLEMENTATION
Our initial implementation of the generator derivation algorithm interfaced directly with Coq’s internals. But,

even for the simply-typed inductive generators of Section 2, this was neither an extensible nor a maintainable

approach. Coq’s term data structure, for example, contains far too much type information that our application

does not care about. Similarly, the internal functions that produce Coq expressions take more arguments that we

need, in order to accurately populate the rich data structure.

To facilitate deriving generators and proof terms (as well as other needed infrastructure such as Show instances

and shrinking functions that we haven’t touched on in this paper), we wrote a small generic programming

framework consisting of two parts: a high level representation of the class of inductive terms we target and a

small DSL for producing Coq expressions. We represent the class we target with the following datatype:

type dep_type =

| DArrow of dep_type * dep_type (* Unnamed arrows *)

| DProd of (var * dep_type) * dep_type (* Binding arrows *)

| DTyParam of ty_param (* Type parameters *)

| DTyCtr of ty_ctr * dep_type list (* Type Constructor *)

| DCtr of constructor * dep_type list (* Data Constructor *)

| DTyVar of var (* Use of a type variable *)

�e representation is relatively standard. Note that arrows and products are treated as a top-level constructors,

since they are of particular importance: arrows can be used to represent side-conditions and products to capture

the universally quanti�ed variables of each constructor. Each type above (like var or constructor) is an opaque

wrapper around Coq identi�ers, completing the separation of the generic library user from Coq internals.

For our term-building DSL, we provide higher-order abstract syntax combinators. To guarantee well-scopedness

of generated terms, we handle fresh name generation internally. For example, the combinator for a local recursive

�xpoint let fix ... in (like the one used to de�ne aux arb in the previous sections) is:

val gRecIn : string -> string list -> (var * var list -> coq_expr) ->
(var -> coq_expr) -> coq_expr

To construct a �xpoint, we require a string, the base name for the recursive �xpoint, and a list of strings, the

base name for each argument. Internally, we convert each such string to a fresh Coq identi�er. �ese identi�ers

can be used to construct other Coq expressions: inside the �xpoint we can use the opaque representation of both

the �xpoint name and its arguments; in the continuation we can only use the �xpoint itself.

7 EVALUATION
We evaluate two aspects of our generators: the applicability of the restricted class of inductive types we target (7.1)

and the e�ciency of the derived generators compared to handwri�en ones (7.2).

7.1 �ickChecking So�ware Foundations
To evaluate the applicability of our algorithm we tried to automatically test a large body of speci�cations that

are representative of those commonly used in verifying properties of programming languages. Such a body

of speci�cations can be found in So�ware Foundations (Pierce et al. 2016), a machine-checked textbook for

programming language theory and veri�cation using Coq. We a�empted to automatically test every theorem

or lemma in the suggested main course of the textbook, all the way through the simply typed lambda calculus

chapters.

Our �ndings are summarized in Figure 5. To avoid skewing our �ndings, we separately count certain classes

of examples. Of the 232 nontrivial (non-unit-test) theorems we considered, 194 (84%) are directly amenable

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generating Good Generators for Inductive Relations • 1:23

Fig. 5. Evaluation Results

to PBRT; the 38 remaining theorems deal with generation for higher-order properties, which we deem too

di�cult for automatic test-case generation (we give examples below). Of the 194 theorems we believed “should

be testable,” 160 (83%) could be tested using our implemented algorithm. �is demonstrates that the class of

inductive propositions targeted by our narrowing generalization is broad enough to tackle many practical cases in

the So�ware Foundations se�ing. �e rest of this section discusses the di�erent classes of theorems we considered

and our methodology for testing each one.

First of all, So�ware Foundations incorporates a large number of unit tests, like the following test for disjunction:

Example test_orb1: (orb true false) = true.

Such examples are trivially checkable and unininteresting from a generation perspective.

On the other hand, a class of lemmas that are completely out of scope of generation techniques deal with

universally quanti�ed higher-order properties. Consider the following canonical example of a Hoare triple:

Theorem hoare_seq : forall P Q R c1 c2,
{{Q}} c2 {{R}} -> {{P}} c1 {{Q}} -> {{P}} c1;;c2 {{R}}.

Testing such a property would require generating arbitrary elements of type state -> Prop, which is beyond

current automatic random generation techniques. For context, the number of higher-order properties we excluded

were 38; 36 of them came from the Logic and Hoare logic chapters that heavily use quanti�cation over Props.

Finally, a third class of properties that could be interesting from a generation perspective but are a poor �t for

property-based random testing are existential properties. For example, consider progress for a type system:

Conjecture progress : forall t T, |- t \in T -> value t \/ exists t', t ===> t'.

While generating t and T such that t has type T is both interesting and possible within the extension of �ickChick

presented in this paper, it is not possible to decide whether the conclusion of the property holds! However, most

of the time, it is possible to rewrite existential conclusions into decidable ones. For example, for a deterministic

step relation, we could write a partial step function and rewrite the conclusion to check whether the term t can

actually take a step: isSome (step t).

With the above in mind we proceeded to automatically derive generators for all simple inductive types,

generators for di�erent modes for inductive relations, as well as proofs for both. We completely elided unit tests,

counted (but otherwise ignored) properties that required generation of higher order properties, and converted

conclusions to decidable when necessary. We then turned each property into a Conjecture—an automatically

admi�ed property—and a�empted to test it with �ickChick. For example, the preservation property became:

Conjecture preservation : forall t t' T, |- t \in T -> t ===> t' -> |- t' \in T.
QuickChick preservation.

�is simulates a common work�ow in interactions with the Coq proof assistant: in order to prove a large theorem

(e.g. type safety), provers o�en Admit smaller lemmas to construct the proof, discharging them a�erwards.

However, admi�ing a lemma that is too strong can lead to a lot of wasted e�ort and frustration. Using �ickChick,

users can uncover bugs early on while building con�dence in such conjectures.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:24 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

For a small portion of the theorems we allowed minor changes (i.e., converting preconditions like beq nat
n1 n2 to n1 = n2). Overall, we only performed one major change: converting So�ware Foundation Maps from

a functional representation to an explicit list-based one. A functional representation for maps is convenient

for looking up element’s associations, but—unless the domain of the function is bounded—makes it completely

impossible to do the reverse. �at requirement is very common in generation—for instance, picking a variable

with a speci�c type from a given context. Moreover, a lot of properties needed to decide equivalence of two maps,

which is also impossible in a functional representation. �erefore, we changed maps to a more generation-friendly

variant. �e new map code was similar in length with respect to the old one (∼ 40 lines), including automatic

derivations of generators and decidability instances, but resulted in many syntactic changes across the rest of the

chapters.

7.2 �ickChecking Noninterference
To evaluate the e�ciency of our approach, we conducted a case study comparing the runtime performance of our

derived generators against carefully tuned handwri�en ones: the generators for the information-�ow control

experiments in Hriţcu et al. (2013, 2016), which generate indistinguishable pairs of machine states using Haskell’s

�ickCheck to discover noninterference violations. �ese generators had already been ported to �ickChick,

where they formed the main case study for the proof generation framework of Paraskevopoulou et al. (2015).

�ere, they were systematically evaluated using a rigorous mutation testing methodology, which we reused here

to ensure that our derived generators had roughly the same bug-�nding capabilities. Our experiments showed

that the derived generators were 1.75× slower than the corresponding handwri�en ones, while producing the

same distribution and bug�nding performance.

In more detail: Dynamic information-�ow controltags data values with security levels, called labels, and uses

them to prevent �ows from high (secret) to low (public) data. In particular, Hriţcu et al. (2013) enhanced a simple,

low-level stack machine with label information and tested it for termination-insensitive noninterference: given two

indistinguishable machine states, i.e. states that di�er only in high data, running them to completion should yield

indistinguishable states. �is is a prototypical example of a conditional property: if we were to generate pairs of

arbitrary machine states and discard those that are not indistinguishable, we would almost never exercise the

conclusion! Instead, Hriţcu et al. (2013) generated a single arbitrary machine state �rst and then varied that state

to produce a new one that was indistinguishable (by construction).

For our evaluation, we focused on a stronger property (also considered by Hriţcu et al. (2013)), single-step
noninterference, which only runs both machines for a single step. As Hriţcu et al. (2013) showed, this makes

generators for valid initial states substantially simpler: since only one instruction will be executed, memories do

not need to be longer than two elements (no more than one element can be accessed by each machine), integer

values that are valid pointers are only 0 or 1 (since the memories are two elements long), and stacks do not need

to be large either.

Consider, for instance, a generator for stacks (of a given length n), which can be empty (Mty), cells that store

a tagged integer (Cons), or specially marked stack frames that store a program counter to be used by a future

Return instruction (RetCons); gen atom produces mostly in-bounds tagged integers.

Fixpoint gen_stack (n : nat) : G Stack :=
match n with
| O => returnGen Mty
| S n' =>
freq [(10, liftGen2 Cons gen_atom (gen_stack n'))

; (4, liftGen2 RetCons gen_atom (gen_stack n'))
]

end.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generating Good Generators for Inductive Relations • 1:25

�e behavior of this generator can be described by a simple inductive predicate, where good atom describes the

behavior of gen atom.

Inductive good_stack : nat -> Stack -> Prop :=
| GoodStackMty : good_stack 0 Mty
| GoodStackCons : forall n a s ,

good_atom a -> good_stack n s -> good_stack (S n) (a :: s)
| GoodStackRet : forall n pc s,

good_atom pc -> good_stack n s -> good_stack (S n) (RetCons pc s).

Finally, we can achieve the same distribution with a weight annotation before deriving generators.

QuickChickWeights [(GoodStackCons, 10); (GoodStackRet, 4)].
Derive ArbitrarySizedSuchThat for (fun s => good_stack n s).

�e implicit assumptions for single-state generators are encoded in inductive predicates, and the indistinguisha-

bility relation is used to derive variation generators.

We tested the single-step noninterference property 10000 times using both the handwri�en and the derived

generators. Our derived generators were 1.75× slower than the handwri�en ones, while both generators uncovered

all mutants successfully. To ensure both generators yield similar distributions of inputs, we used �ickChick’s

collect to determine the number of times each instruction was generated during those 10000 tests (as this was

the metric that was used to �ne-tune the handwri�en generators in the �rst place).

�e observed 1.75× slowdown is mostly due to the added overhead of local backtracking and extraneous

matches like the one in the goodTree example of Section 3. A few local optimizations (like pulling a match

outside of a call to backtrack) could further improve on our performance, but would require additional work to

produce the corresponding proof terms. Still, this overhead is much be�er than the order-of-magnitude overhead

of interpreted approaches like Luck (Lampropoulos et al. 2017). Finally, what we gain in return for this loss in

performance is that the declarative nature of the inductive predicates exposes exactly what assumptions are

made about the generated domain, while the produced proofs guarantee completeness for that domain.

8 RELATED WORK
Narrowing-based approaches. �e most closely related works, narrowing-based approaches, have already been

brie�y discussed in the introduction. Such approaches have given rise to tools for many languages, including

Haskell (Claessen et al. 2014) and Racket (Fetscher et al. 2015), as well as domain-speci�c languages, like

UDITA (Gligoric et al. 2010) and Luck (Lampropoulos et al. 2017). All of these artifacts successfully adapt variants

of narrowing to generate values satisfying preconditions.In this paper, we build upon their success, adapting

narrowing for Coq’s inductive relations, showing how to produce Coq generators ge�ing rid of interpretation

overheads, and producing proofs of the generators correctness in the process.

Smart enumeration approaches. Another closely related line of work deals with enumeration for data satisfying

invariants. Perhaps closest to us is the work in the context of Isabelle’s �ickCheck (Bulwahn 2012a,b). �ere,

Bulwahn targets a similar simply-typed subset of Isabelle producing ML enumerators. A di�erent enumeration

approach, based on laziness, is taken for Haskell’s Lazy SmallCheck (Runciman et al. 2008), as well as Scala’s

SciFe (Kuraj et al. 2015). Laziness conceptually mimics narrowing by delaying the instantiation of variables when

possible. On the other hand, (Fischer and Kuchen 2007) and (Christiansen and Fischer 2008) leverage the built-in

narrowing mechanism of the functional logic programming language Curry (Hanus et al. 1995) to enumerate data

satisfying invariants. While enumeration based testing can be very successful in various domains, we turn to

random testing as the complexity of our target applications—like, for example, well typed lambda terms—makes

enumeration intractable.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:26 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

SMT-based approaches. An alternative approach to generating inputs satisfying a precondition P is to translate

P into logic and then use an SMT solver. Such a translation has been performed a few times (Carlier et al. 2013;

Gotlieb 2009; Seidel et al. 2015)). �e most recent and e�cient one, Target (Seidel et al. 2015), targets Liquid

Haskell preconditions in the form of re�nement types. While Target outperforms Lazy SmallCheck and similar

tools in a lot of cases, Luck (Lampropoulos et al. 2017) shows that narrowing can still perform be�er on occasion.

Moreover, the complexity of the translation leaves li�le room, if any, for controlling the distribution of generated

inputs, unlike in �ickChick-derived generators where users can leverage Luck-style annotations to control

backtrack weights.

Inductive to Executable Speci�cations. At a high level, the algorithm described in Section 4 has similarities to

earlier a�empts at extracting executable speci�cations from inductive ones (Delahaye et al. 2007; Tolli�e et al.

2012) in the Coq proof assistant. In principle, we could use the algorithm described in this section to obtain a

similar transformation. Consider for example, an inductive predicate P : A -> B -> C -> Prop. If we transform it to

a predicate P’ : A -> B -> C -> unit -> Prop by adding () as an additional argument at every occurrence of P, we

could ask our algorithm to generate x such that P’ a b c x holds for all a, b, and c. We would then essentially

obtain a partial decision procedure for P, based on whether the generator returns Some or None. In fact, our

algorithm can be seen as a generalization of their approach as the derived decision procedures are equivalent

(modulo size) for the class of inductive datatypes they handle that yields deterministic functional programs.

9 CONCLUSION AND FUTURE WORK
We have presented a narrowing-based algorithm for compiling dependently-typed inductive relations into gener-

ators for random data structures satisfying these relations, together with correctness proofs. We implemented it

in the Coq proof assistant and evaluated its applicability by automatically deriving generators to test the majority

of theorems in So�ware Foundations.
In the future, we aim to extend our algorithm to a larger class of inductive de�nitions. For example, incorporating

function symbols is straightforward: simply treat functions as black boxes, instantiating all of their arguments

before treating the result as a �xed range. For statically known functions, we could also leverage Coq’s open

term reduction to try to simplify function calls into constructor terms. Finally, it would be possible to adapt

the established narrowing approaches for functional programs to meaningfully instantiate unknown function

arguments against a known result pa�ern, just like in Luck (Lampropoulos et al. 2017).

We also want to see if our algorithm can be adapted to derive decidability instances for speci�cations in Prop,

allowing for immediate, fully automatic testing feedback. We are also interested in shrinkers for constrained data,

to complete the property-based testing ecosystem for Coq.

ACKNOWLEDGMENTS
We are grateful to Maxime Dénès, Cătălin Hriţcu, John Hughes, George Karachalias, Michal Palka, Antal Spector-

Zabusky, the CLA workshop community, and the Penn PLClub for their useful comments. �is material is based

upon work supported by the National Science Foundation under Grant No. 1421243 (Random Testing for Language
Design) and Grant No. 1521523 (Expeditions in Computing: �e Science of Deep Speci�cation). Any opinions,

�ndings, and conclusions or recommendations expressed in this material are those of the author and do not

necessarily re�ect the views of the National Science Foundation.

REFERENCES
Sergio Antoy. 2000. A Needed Narrowing Strategy. In Journal of the ACM, Vol. 47. ACM Press, 776–822. h�ps://www.informatik.uni-kiel.de/

∼mh/papers/JACM00.pdf

�omas Arts, Laura M. Castro, and John Hughes. 2008. Testing Erlang Data Types with �viQ �ickCheck. In 7th ACM SIGPLAN Workshop
on Erlang. ACM, 1–8. DOI:h�p://dx.doi.org/10.1145/1411273.1411275

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://www.informatik.uni-kiel.de/~mh/papers/JACM00.pdf
https://www.informatik.uni-kiel.de/~mh/papers/JACM00.pdf
http://dx.doi.org/10.1145/1411273.1411275

Generating Good Generators for Inductive Relations • 1:27

Lukas Bulwahn. 2012a. �e New �ickcheck for Isabelle - Random, Exhaustive and Symbolic Testing under One Roof. In 2nd International
Conference on Certi�ed Programs and Proofs (CPP) (Lecture Notes in Computer Science), Vol. 7679. Springer, 92–108. h�ps://www.irisa.fr/

celtique/genet/ACF/BiblioIsabelle/quickcheckNew.pdf

Lukas Bulwahn. 2012b. Smart Testing of Functional Programs in Isabelle. In 18th International Conference on Logic for Programming, Arti�cial
Intelligence, and Reasoning (LPAR) (Lecture Notes in Computer Science), Vol. 7180. Springer, 153–167. h�p://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.229.1307&rep=rep1&type=pdf

Ma�hieu Carlier, Catherine Dubois, and Arnaud Gotlieb. 2013. FocalTest: A Constraint Programming Approach for Property-Based

Testing. In So�ware and Data Technologies (Communications in Computer and Information Science), Vol. 170. Springer, 140–155. DOI:
h�p://dx.doi.org/10.1007/978-3-642-29578-2 9

Harsh Raju Chamarthi, Peter C. Dillinger, Ma� Kaufmann, and Panagiotis Manolios. 2011. Integrating Testing and Interactive �eorem Proving.

In 10th International Workshop on the ACL2 �eorem Prover and its Applications (EPTCS), Vol. 70. 4–19. h�p://arxiv.org/abs/1105.4394

Jan Christiansen and Sebastian Fischer. 2008. EasyCheck – Test Data for Free. In 9th International Symposium on Functional and Logic
Programming (FLOPS) (Lecture Notes in Computer Science), Vol. 4989. Springer, 322–336. h�p://www-ps.informatik.uni-kiel.de/∼sebf/data/

pub/�ops08.pdf

Koen Claessen, Jonas Duregård, and Michal H. Palka. 2014. Generating Constrained Random Data with Uniform Distribution. In Functional
and Logic Programming (Lecture Notes in Computer Science), Vol. 8475. Springer, 18–34. DOI:h�p://dx.doi.org/10.1007/978-3-319-07151-0 2

Koen Claessen and John Hughes. 2000. �ickCheck: a lightweight tool for random testing of Haskell programs. In 5th ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP). ACM, 268–279. h�p://www.eecs.northwestern.edu/∼robby/courses/395-495-2009-fall/

quick.pdf

David Delahaye, Catherine Dubois, and Jean-Frédéric Étienne. 2007. Extracting Purely Functional Contents from Logical Inductive Types. In

20th International Conference on �eorem Proving in Higher Order Logics (TPHOLs) (Lecture Notes in Computer Science), Vol. 4732. Springer,

70–85. h�p://cedric.cnam.fr/∼delahaye/papers/pred-exec%20(TPHOLs’07).pdf

Maxime Dénès, Cătălin Hriţcu, Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2014. �ickChick: Property-based

testing for Coq. �e Coq Workshop. (July 2014). h�p://prosecco.gforge.inria.fr/personal/hritcu/talks/coq6 submission 4.pdf

Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. 2003. Combining Testing and Proving in Dependent Type �eory. In 16th International
Conference on �eorem Proving in Higher Order Logics (TPHOLs) (Lecture Notes in Computer Science), Vol. 2758. Springer, 188–203.

h�p://www.cse.chalmers.se/∼peterd/papers/Testing Proving.pdf

Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. 2004. Verifying Haskell programs by combining testing, model checking and inter-

active theorem proving. Information & So�ware Technology 46, 15 (2004), 1011–1025. h�p://www.cse.chalmers.se/∼peterd/papers/

TestingModelChecking.pdf

Burke Fetscher, Koen Claessen, Michal H. Palka, John Hughes, and Robert Bruce Findler. 2015. Making Random Judgments: Automatically

Generating Well-Typed Terms from the De�nition of a Type-System. In 24th European Symposium on Programming (Lecture Notes in
Computer Science), Vol. 9032. Springer, 383–405. h�p://users.eecs.northwestern.edu/∼baf111/random-judgments/

Sebastian Fischer and Herbert Kuchen. 2007. Systematic generation of glass-box test cases for functional logic programs. In 9th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP). ACM, 63–74. h�p://www-ps.informatik.uni-kiel.

de/∼sebf/pub/ppdp07.html

Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak, and Darko Marinov. 2010. Test generation through

programming in UDITA. In 32nd ACM/IEEE International Conference on So�ware Engineering. ACM, 225–234. DOI:h�p://dx.doi.org/10.

1145/1806799.1806835

Arnaud Gotlieb. 2009. Euclide: A Constraint-Based Testing Framework for Critical C Programs. In ICST 2009, Second International Conference
on So�ware Testing Veri�cation and Validation, 1-4 April 2009, Denver, Colorado, USA. 151–160. DOI:h�p://dx.doi.org/10.1109/ICST.2009.10

M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. 1995. Curry: A Truly Functional Logic Language. In Proc. ILPS’95 Workshop on Visions for the
Future of Logic Programming. 95–107. h�p://www.math.rug.nl/∼piter/KR/hanus95curry.pdf

Cătălin Hriţcu, John Hughes, Benjamin C. Pierce, Antal Spector-Zabusky, Dimitrios Vytiniotis, Arthur Azevedo de Amorim, and Leonidas

Lampropoulos. 2013. Testing Noninterference, �ickly. In 18th ACM SIGPLAN International Conference on Functional Programming (ICFP).
ACM, 455–468. h�p://prosecco.gforge.inria.fr/personal/hritcu/publications/testing-noninterference-icfp2013.pdf

Cătălin Hriţcu, Leonidas Lampropoulos, Antal Spector-Zabusky, Arthur Azevedo de Amorim, Maxime Dénès, John Hughes, Benjamin C.

Pierce, and Dimitrios Vytiniotis. 2016. Testing Noninterference, �ickly. Journal of Functional Programming (JFP); Special issue for ICFP
2013 26 (April 2016), e4 (62 pages). DOI:h�p://dx.doi.org/10.1017/S0956796816000058 Technical Report available as arXiv:1409.0393.

John Hughes. 2007. �ickCheck Testing for Fun and Pro�t. In 9th International Symposium on Practical Aspects of Declarative Languages
(PADL) (Lecture Notes in Computer Science), Vol. 4354. Springer, 1–32. h�p://people.inf.elte.hu/center/fulltext.pdf

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of Mutation Testing. IEEE Transactions on So�ware Engineering
37, 5 (2011), 649–678. h�p://crest.cs.ucl.ac.uk/�leadmin/crest/sebasepaper/JiaH10.pdf

Ivan Kuraj and Viktor Kuncak. 2014. SciFe: Scala framework for e�cient enumeration of data structures with invariants. In Proceedings of the
Fi�h Annual Scala Workshop. ACM, 45–49. DOI:h�p://dx.doi.org/10.1145/2637647.2637655

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://www.irisa.fr/celtique/genet/ACF/BiblioIsabelle/quickcheckNew.pdf
https://www.irisa.fr/celtique/genet/ACF/BiblioIsabelle/quickcheckNew.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.1307&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.1307&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-642-29578-2_9
http://arxiv.org/abs/1105.4394
http://www-ps.informatik.uni-kiel.de/~sebf/data/pub/flops08.pdf
http://www-ps.informatik.uni-kiel.de/~sebf/data/pub/flops08.pdf
http://dx.doi.org/10.1007/978-3-319-07151-0_2
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
http://cedric.cnam.fr/~delahaye/papers/pred-exec%20(TPHOLs'07).pdf
http://prosecco.gforge.inria.fr/personal/hritcu/talks/coq6_submission_4.pdf
http://www.cse.chalmers.se/~peterd/papers/Testing_Proving.pdf
http://www.cse.chalmers.se/~peterd/papers/TestingModelChecking.pdf
http://www.cse.chalmers.se/~peterd/papers/TestingModelChecking.pdf
http://users.eecs.northwestern.edu/~baf111/random-judgments/
http://www-ps.informatik.uni-kiel.de/~sebf/pub/ppdp07.html
http://www-ps.informatik.uni-kiel.de/~sebf/pub/ppdp07.html
http://dx.doi.org/10.1145/1806799.1806835
http://dx.doi.org/10.1145/1806799.1806835
http://dx.doi.org/10.1109/ICST.2009.10
http://www.math.rug.nl/~piter/KR/hanus95curry.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/testing-noninterference-icfp2013.pdf
http://dx.doi.org/10.1017/S0956796816000058
http://people.inf.elte.hu/center/fulltext.pdf
http://crest.cs.ucl.ac.uk/fileadmin/crest/sebasepaper/JiaH10.pdf
http://dx.doi.org/10.1145/2637647.2637655

1:28 • Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce

Ivan Kuraj, Viktor Kuncak, and Daniel Jackson. 2015. Programming with Enumerable Sets of Structures. In OOPSLA. h�p://lara.ep�.ch/

∼kuncak/papers/KurajETAL15ProgrammingEnumerableSetsStructures.pdf

Leonidas Lampropoulos, Diane Gallois-Wong, Catalin Hritcu, John Hughes, Benjamin C. Pierce, and Li-yao Xia. 2017. Beginner’s Luck: a

language for property-based generators. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. 114–129. h�p://dl.acm.org/citation.cfm?id=3009868

Fredrik Lindblad. 2007. Property Directed Generation of First-Order Test Data. In 8th Symposium on Trends in Functional Programming (Trends
in Functional Programming), Vol. 8. Intellect, 105–123. h�p://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.2439&rep=rep1&

type=pdf

Carlos Pacheco and Michael D. Ernst. 2007. Randoop: feedback-directed random testing for Java. In 22nd ACM SIGPLAN Conference on
Object-Oriented Programming Systems And Applications (OOPSLA). ACM, 815–816. DOI:h�p://dx.doi.org/10.1145/1297846.1297902

Michal H. Palka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing an Optimising Compiler by Generating Random Lambda

Terms. In Proceedings of the 6th International Workshop on Automation of So�ware Test (AST ’11). ACM, New York, NY, USA, 91–97. DOI:
h�p://dx.doi.org/10.1145/1982595.1982615

Manolis Papadakis and Konstantinos F. Sagonas. 2011. A PropEr integration of types and function speci�cations with property-based testing.

In Proceedings of the 10th ACM SIGPLAN workshop on Erlang, Tokyo, Japan, September 23, 2011. 39–50. DOI:h�p://dx.doi.org/10.1145/

2034654.2034663

Zoe Paraskevopoulou, Cătălin Hriţcu, Maxime Dénès, Leonidas Lampropoulos, and Benjamin C. Pierce. 2015. Foundational Property-Based

Testing. In 6th International Conference on Interactive �eorem Proving (ITP) (Lecture Notes in Computer Science), Christian Urban and

Xingyuan Zhang (Eds.), Vol. 9236. Springer, 325–343. h�p://prosecco.gforge.inria.fr/personal/hritcu/publications/foundational-pbt.pdf

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and

Brent Yorgey. 2016. So�ware Foundations. Electronic textbook, Version 4.0 beta. h�ps://www.cis.upenn.edu/∼bcpierce/sf/sf-4.0/index.html

Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation Validation. In Tools and Algorithms for Construction and Analysis of Systems,
4th International Conference, TACAS ’98, Held as Part of the European Joint Conferences on the �eory and Practice of So�ware, ETAPS’98,
Lisbon, Portugal, March 28 - April 4, 1998, Proceedings (Lecture Notes in Computer Science), Bernhard Ste�en (Ed.), Vol. 1384. Springer,

151–166. DOI:h�p://dx.doi.org/10.1007/BFb0054170

Colin Runciman, Ma�hew Naylor, and Fredrik Lindblad. 2008. SmallCheck and Lazy SmallCheck: automatic exhaustive testing for small

values. In 1st ACM SIGPLAN Symposium on Haskell. ACM, 37–48. h�p://www.cs.york.ac.uk/fp/smallcheck/smallcheck.pdf

Eric L. Seidel, Niki Vazou, and Ranjit Jhala. 2015. Type Targeted Testing. In Programming Languages and Systems - 24th European Symposium
on Programming, ESOP 2015, Held as Part of the European Joint Conferences on �eory and Practice of So�ware, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings. 812–836. DOI:h�p://dx.doi.org/10.1007/978-3-662-46669-8 33

Ma�hieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes. In Proceedings of the 21st International Conference on �eorem Proving in
Higher Order Logics (TPHOLs ’08). Springer-Verlag, Berlin, Heidelberg, 278–293. DOI:h�p://dx.doi.org/10.1007/978-3-540-71067-7 23

Pierre-Nicolas Tolli�e, David Delahaye, and Catherine Dubois. 2012. Producing Certi�ed Functional Code from Inductive Speci�cations.

In Second International Conference on Certi�ed Programs and Proofs (CPP) (Lecture Notes in Computer Science), Vol. 7679. Springer.

h�p://cedric.cnam.fr/∼delahaye/papers/relext-coq%20%28CPP%2712%29.pdf

P. Wadler and S. Blo�. 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’89). ACM, New York, NY, USA, 60–76. DOI:h�p://dx.doi.org/10.1145/75277.75283

Li-yao Xia. 2017. generic-random: Generic, Customizable Arbitrary Instances. h�p://hackage.haskell.org/package/generic-random. (10

April 2017).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://lara.epfl.ch/~kuncak/papers/KurajETAL15ProgrammingEnumerableSetsStructures.pdf
http://lara.epfl.ch/~kuncak/papers/KurajETAL15ProgrammingEnumerableSetsStructures.pdf
http://dl.acm.org/citation.cfm?id=3009868
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.2439&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.2439&rep=rep1&type=pdf
http://dx.doi.org/10.1145/1297846.1297902
http://dx.doi.org/10.1145/1982595.1982615
http://dx.doi.org/10.1145/2034654.2034663
http://dx.doi.org/10.1145/2034654.2034663
http://prosecco.gforge.inria.fr/personal/hritcu/publications/foundational-pbt.pdf
https://www.cis.upenn.edu/~bcpierce/sf/sf-4.0/index.html
http://dx.doi.org/10.1007/BFb0054170
http://www.cs.york.ac.uk/fp/smallcheck/smallcheck.pdf
http://dx.doi.org/10.1007/978-3-662-46669-8_33
http://dx.doi.org/10.1007/978-3-540-71067-7_23
http://cedric.cnam.fr/~delahaye/papers/relext-coq%20%28CPP%2712%29.pdf
http://dx.doi.org/10.1145/75277.75283
http://hackage.haskell.org/package/generic-random

	Abstract
	1 Introduction
	2 QuickChick : QuickCheck in Coq
	2.1 Generators
	2.2 QuickChick Typeclasses

	3 Good Generators, by Example
	4 Generating Good Generators
	5 Generating Correctness Proofs
	5.1 Verification Framework
	5.2 Proof Generation
	5.3 Typeclasses for Proof Generation

	6 Implementation
	7 Evaluation
	7.1 QuickChecking Software Foundations
	7.2 QuickChecking Noninterference

	8 Related Work
	9 Conclusion and future work
	Acknowledgments
	References

