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The general context

Several applications manipulate data that change dynamically over time, and only a small change in the
data may trigger the re-computation of the whole output. However, it is often the case that only a small
part of the output is affected by a change in the application data. That raises an interesting question: could
we reuse parts of previous computations in order to increase the performance of software applications? The
aim of incremental computation is to reuse the results of earlier runs in order to recompute only those
outputs that depend on data that has changed, avoiding recomputation of data that is not affected by the
changes [1]. We refer to the process of updating the parts of the output that depends on data that have
changed as change propagation. Incremental computation may be explicit or implicit. In the former the
programmer should explicitly write code that performs change propagation, while in the latter no manual
effort is required from the programmer. The original program can be compiled into a self-adjusting program,
i.e. a program that can propagate changes from the inputs to the output, without recomputing the parts of
the result that remain the same.

The research problem

Various techniques have been proposed in order to derive software that responds automatically and efficiently
to changing data, including static and static and dynamic dependency graphs[6, 18, 2] and function call
memoization[15, 10], in which change propagation may perform asymptotically faster than recomputing
the output from scratch. However, in all previous work on incremental computation, the programmer
must reason manually about the complexity of an incremental run, by analysis of the cost semantics of
program. CostIt is a higher-order functional language equipped with a refinement type system that allows
the programmer to prove upper bounds for the cost of change propagation. That is made possible using
index refinement types, in the style of DML [17], and type annotations that allows tracking which part of
the data may or may not change after an update.

Contribution

This internship focuses on proving the soundness of the type system with respect to a concrete semantics
of change propagation. More specifically, we prove that the cost incurred by the type system is a sound
approximation, i.e. an upper bound, on the cost of propagating changes in a program after a change in its
inputs. We propose a translation scheme that given a source program written in CostIt [5] transforms it
to a self-adjusting program written in a target language that provides support for change propagation. To
this end, we enrich an ML-like language with new primitives and a modified runtime in order to facilitate
change propagation. Our target language, referred to as saML, allows us to propagate changes in programs
by reusing parts of the data computed in the first run and only recomputing and updating in place data
that may have changed. During the first run we record the components that may have changed along with a
closure that computes their updated value. In each incremental run it suffices to only execute the recorded
closures and update the changeable components.
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Arguments supporting the validity of our approach

We prove that our translation is type preserving, i.e. that the translated program is well-typed in the
target language and that its type coincides with the translation of the source type into a target type.
Furthermore, we prove the correctness of our translation by proving contextual equivalence between a from-
scratch execution in the source and a from-scratch execution in the target language. Similarly, we prove
that our change propagation mechanism is sound by proving contextual equivalence between an incremental
run in the target language and a from-scratch execution of the same program in the source language. More
importantly, we prove that the cost incurred by the type system soundly approximates the cost of an
incremental run of the self-adjusting saML program. That establishes the soundness of the type system. 1.
In order to show the correctness of the translation we construct a step-indexed Kripke relational model, a
powerful proof technique with well-studied applications in proving program equivalence and correctness of
program transformations [3, 7, 16].

Summary and future work

The main contribution of this internship is the soundness proof of CostIt, a novel proof system that allows
to prove upper bounds on the complexity of change propagation. This is done by translating a CostIt
program to a self-adjusting ML program and proving that the cost incurred by the type system is a sound
approximation of the actual change propagation cost.

There is ongoing work, by Ezgi Çiçek and Deepak Garg, towards the implementation of the type system
using bidirectional type checking, a combination of type inference and type checking that reduces the amount
of type annotations that the programmer has to write. The domain of constraints is intractable and thus
we cannot expect fully automated verification. With this in mind, it is worth exploring the possibility of
building a semi-automatic interactive prover using a combination of automatic and manual techniques, such
as constraint solvers and interactive provers, as in Why3.

Another possible future direction, inspired by recent work by Hammer et al. [9], would be to modify
CostIt’s static and dynamic semantics in order to model demand-driven incremental computation. Unlike
traditional incremental computation, demand-driven incremental computation defers the re-computation
of a result until the result is used, allowing for even better speedups over full re-evaluation. Similar to
traditional change propagation, no formal system that supports reasoning about demand-driven change
propagation cost has been proposed up to now.
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1 Introduction
CostIt is a functional language equipped with a type system that is expressive enough to facilitate reasoning
about the dynamic stability of programs [5], i.e. the time requires to propagate changes from the inputs
to the output of a program. This is made possible by treating dynamic stability as an effect in the type
system [13]. Furthermore, the cost of change propagation can depend on attributes of the input, such as
the length of a list. In order to track such attributes of program inputs the type system is equipped with
index refinement types, in the style of DML [17] or DFuzz [8].

Unlike the previous version of CostIt [5], that disallowed control flow changes between the initial and a
subsequent run by enforcing that control flow does not depend on data that may change, in this work we
consider an extension of CostIt that allows for control flow changes between the initial and a subsequent
run. In order to facilitate control flow dependency from changeable data the type system is extended with
a mode that allows to establish upper bounds for worst case from-scratch execution time. Reasoning about
from-scratch execution is required as the program may follow paths that were not explored during the first
run and thus there is not sufficient runtime information to perform change propagation. This extension is
unpublished work by Ezgi Çiçek and Deepak Garg.

CostIt’s typing judgments have the form `κε e : τ , where ε denotes the typing mode and κ the upper
bound of the cost of the computation. When the typing is in change propagation mode, i.e. ε is S, then the
derived cost represents the upper bound on cost of change propagation. Correspondingly, when the typing is
in from-scratch mode, i.e. ε is C, the derived mode is the worst case execution time. Similarly, functions are
annotated with effects, which represent either dynamic stability or worst case execution time. A function
of type τ1

S(κ)−−→ τ2 can propagate changes with cost less or equal to κ. A function of type τ1
C(κ)−−−→ τ2 can

execute from-scratch with cost less or equal to κ.
In order to differentiate between changeable and stable values, types are annotated with labels that

indicate whether a value can change or not. Similar annotations have also been used in the context of
information flow control analysis [14], binding-time analysis [13], but also incremental computation [4]. A
value that can change between two runs has a type annotated with C·. A value that cannot change between
different runs is annotated with (·)S or (·)�. Intuitively, (·)S and (·)� differ only in higher-order and sum
types. The definition of a function that is labeled with (·)S should remain the same between two runs.
Nevertheless, the definition may capture variables that can change. A function labeled with (·)� not only
itself cannot change but also does not capture inside its body any changeable variable from the environment.
Similarly, a sum type annotated with (·)� should not capture inside its definition values that are allowed to
change between different runs.

In the following subsections we will describe the type system first through an example and then through
the formal presentation of the typing rules.

1.1 Typing by Example
As our running example we will pick the higher-order function map. For simplicity, we will assume that it
operates on lists of integers. In CostIt map can be given the type

∀κ
S(0)
:: Ṙ+. ((int)C S(κ)−−−→ (int)C)� S(0)−−→ ∀n

S(0)
:: Ṅ. ∀a

S(0)
:: Ṅ. list [n]a (int)C S(κ·α)−−−−→ list [n]α (int)C

The code of the function can be seen in fig. 6. The type reads follows: given a function, that itself does not
change, does not capture any changeable variables from the environment, and executes from scratch with
cost κ, and a list with n elements from which at most α can change, the function can propagate changes in
the input list to the output list with cost at most κ · α.

We will explain how this type can be derived in the type system. When the list is empty the computation
has zero cost and the result is derived trivially. Assume now that the list has length n + 1. There are two
cases: a.) the head is changeable and b.) the head is stable. In the first case, the application of the function
to the head of the lists will incur cost κ and, furthermore, the rest of the list has type list [n− 1]α−1 τ .
By the induction hypothesis we can derive that the recursive call incurs cost κ ∗ (α − 1) and the result
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Base Types A ::= int | τ1 + τ2 | τ1
S(κ)−−→ τ2 | τ1

C(κ)−−−→ τ2 | ∀i
S(κ)
:: S. τ | ∀i

C(κ)
:: S. τ

Types τ ::= (A)µ | unit | τ1 × τ2 | list [n]α τ | ∃i. τ | C → τ | C ∧ τ |
Modes µ, ε, δ ::= S | C | �
Sorts S ::= Ṅ | Ṙ+

Index terms I, κ ::= i | 0 | I +̂ 1
I1 +̂ I2 | I1 −̂ I2 | Î1

I2
| I1 ·̂ I2 | ˆdIe | ˆbIc | ˆlog2(I) | II2

1 |
ˆmin(I1, I2) | ˆmax(I1, I2) |

∑̂In
i=I1I | C ? I1 : I2

Constraints C ::= I1
.= I2 | I1 <̇ I2 | ¬̇C | ⊥̇ | C1 ∧̇ C2 | C1 ∨̇ C2

Constraint env. Φ ::= >̇ | Φ ∧̇ C

Sort env. ∆ ::= ∅ | ∆, i :: S

Type env. Γ ::= ∅ | Γ, x : τ

Figure 1: Types

follows immediately. The second case is less trivial and requires non-standard reasoning. Since the head
is stable the rest of the list will have type list [n− 1]α and from the induction hypothesis we derive that
the recursive call incurs cost κ ∗ α. It suffices to show that the function application will incur zero cost and
the result of the application, that is cons-ed to the list, is stable. Since there are no free variables that can
change between runs in the expression or variables that can capture changeable values, it should be the case
that the value of the expression cannot change between runs and thus, no change propagation is needed.
Furthermore, the result can be safely annotated as stable, and thus added to the list without increasing the
count of changeable elements. This form of reasoning is embedded as a typing rule in the type system, and
as we will explain later in this section, corresponds to a comonadic reasoning principle.

1.2 Syntax and Semantics

In this subsection we will describe the syntax and the semantics of CostIt’s language. The complete syntax
of types and terms can be seen in figs. 1 and 2.

Values v ::= n | b | (v1, v2) | inl v | inr v | [] | v1 :: v2 |
fix f(x). e | Λ. e | pack v | ()

Expressions e, f ::= x | n | b | (e1, e2) | fst e | snd e | inl e | inr e | case(e, x.y, e1.e2) |
[] | e1 :: e2 | (caseL e of nil → e1 | cons(h, tl) → e2) |
fix f(x). e | e1 e2 | ζ(e) | Λ. e | e[] | pack e | unpack e as x in e′ |
let x = e1 in e2 | ()

Figure 2: Value and expression syntax

Index terms can be either natural numbers or positive real numbers, represented with the sorts Ṅ and
Ṙ+ respectively. They are equipped with the standard arithmetical operations that are overloaded for the
two sorts and there is an implicit coercion from Ṅ to Ṙ+. The sorting judgment ∆ ` I :: S, where ∆ is the
index environment assigning sorts to free index variables, assigns a sort to an index term.

Constraints are propositions over index terms. They are subject to a standard well-formedness judgment,
denoted ∆ ` C wf. Moreover, we define a logical entailment judgment, denoted ∆; Φ |= C where Φ is the
environment where we collect constraints, which is defined by interpreting constraints in arithmetic. The
sorting and well-formedness judgments for index terms and constraints are similar to those presented by
Çiçek et al. [5] thus they are omitted.
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The types of CostIt are simple types refined by index terms and annotated with changeability annotations.
Functions are annotated with effects as described earlier in this section. Universally quantified types are
also annotated with effects that represent the cost of change propagation or from-scratch execution of the
closure. Lists are refined with both the length of the list and the number of elements that are allowed to
change between runs. More precisely the list type list [n]α τ denotes a list of type τ with n elements from
which at α can change.

The syntax of CostIt’s terms is fairly standard. Note that abstraction and instantiation of index terms,
denoted Λ. e and e[] respectively, do not mention index terms to avoid syntactic. For more details the reader
can refer to [5].

Similar to all other refinement type systems, CostIt is equipped with a subtyping judgment, denoted
∆; Φ `κε τ1 v τ2. Subtyping has two subtyping modes, one for from-scratch evaluation and the other for
change propagation. The only difference in the two modes is the cost. We will not explain the intuition
behind the derived cost in this section. We will defer this discussion until section 4. Selected subtyping
rules are presented in fig. 3.

∆; Φ |= κ +̂ costconv(τ��
1 , τ1) +̂ (δ = C) ? (1 +̂ costconv(τ2, τ

��
2 )) : 0 ≤̇ κ′

∆; Φ `0
ε (τ1

δ(κ)−−−→ τ2)� v (τ��
1

δ(κ′)−−−→ τ��
2 )�

→ 1

∆; Φ `κ1
δ τ ′1 v τ1 ∆; Φ `κ2

δ τ2 v τ ′2 ∆; Φ |= κ +̂ κ1 +̂ κ2 +̂ (δ = C) ? 1 : 0 ≤ κ′

∆; ΦA `0
ε τ1

δ(κ)−−−→ τ2 v τ ′1
δ(κ′)−−−→ τ ′2

→ 2

∆; Φ |= κ
.= (ε = C) ? 1 +̂ ˆmax(costconv(τ1, τ

��
1 ), costconv(τ2, τ

��
2 )) : 0

∆; Φ `κε (τ1 + τ2)� v (τ��
1 + τ��

2 )�
+1

∆; Φ |= α
.= 0

∆; Φ `0
ε list [n]α τ v list [n]α τ�� l1*

∆; Φ |= n
.= n′ ∆; Φ |= α

.= α′ ∆; Φ `κ
′

S τ v τ ′ ∆; Φ |= κ
.= α ·̂ κ′

∆; Φ `κS list [n]α τ v list [n′]α
′

τ ′
l2-S

∆; Φ |= µ ≤ µ′ ∆; Φ |= κ
.= costconv((A)µ, (A)µ

′
)

∆; Φ `κε (A)µ v (A)µ
′ µ

∆; ΦA `κε A v A′ ∆; Φ |= κ
.= κ′ +̂ (µ = C) ? 2 : 0

∆; Φ `κε (A)µ v (A′)µ
C

∆; Φ `κ1
ε τ1 v τ2 ∆; Φ `κ2

ε τ2 v τ3 ∆; Φ |= κ
.= κ1 +̂ κ2

∆; Φ `κε τ1 v τ3
tran

Figure 3: Selected subtyping rules

The rule → 1 states if a function that does not change and does not capture changeable variables from
its environment is given an argument that does not change nor capture changeable variables, then the result
also cannot change or capture changeable variables. The rule → 2 states that subtyping is contravariant in
the argument type and covariant in the result type. Subtyping is also a covariant in the cost of the function,
since it represents an upper bound. The rule l1 states that the type of a list with that contains only stable
elements can be stabilized. The type stabilization function, denoted (·)��, is defined as the homomorphic
lifting on types of the operation that turns all the changeability annotations to (·)�, i.e. (Aµ)�� = (A)�.
Note that this operation leaves base types unaffected. The rule l2S states that if a type is a subtype of an
other type then a list of elements of the first type is a subtype of list of elements of the second type. The
rule µ states that a stable type can be lifted to a changeable type. 2

The typing judgment of CostIt has the form ∆; Φ; Γ `κε e : τ , where ∆ is the sorting environment, Φ is the
constraint environment, Γ is the typing environment, ε is the mode and κ the dynamic stability. Selected

2Changeability annotations enjoy a total order, namely � < S < C
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subtyping rules are presented in fig. 4. Again, we will defer the explanation of the derived dynamic stability
until section 4.

The rule fix1 states that a function is typable with a change propagation (resp. from-scratch) cost if its
body is typable in change propagation (resp. from-scratch) mode incurring the same cost. Rule app states
that a function can be applied in mode ε if its mode is at least ε, i.e. a change propagation function cannot
be applied in from scratch mode. Furthermore, it states that a function that changes between two runs
can only re-execute from scratch. The case rule is straight forward. An interesting detail is that when the
scrutinee can change then the branches should be typed in from-scratch mode, reflecting the fact they should
be re-evaluated during change propagation. Rule nochange embodies the co-monadic reasoning principle
in the type system treating (τ)� as a co-monadic type [12]. It states that if an expression is typable in a
stable context, i.e. if all of its free variables cannot change between two runs, then change propagation can
be bypassed incurring zero cost. This relies on a very intuitive property of change propagation; if none of
an expressions’s free variables can change between two runs then the expression should evaluate to the same
value. Furthermore, the type of the expression can be stabilized, reflecting the fact that it cannot change
between runs. The rule caseL embeds the inductive reasoning principle we used in the example we gave
earlier in the type system. It has tree premises. The first premise applies when the scrutinee evaluates to
an empty list. The second and the third cases correspond to the inductive case. The second applies when
the head of the list is stable. In this case the total number of elements in the tail is decreased by one. The
third premise applies when the head of the list is changeable. Both the total number of elements in the list
and the total number of changeable elements in the tail are decreased by one.

∆; Φ; Γ, f : (τ1
δ(κ)−−−→ τ2)S, x : τ1 `κδ e : τ2

∆; Φ; Γ `0
ε fix f(x). e : (τ1

δ(κ)−−−→ τ2)S
fix1

∆; Φ; Γ `κ1
ε e1 : (τ1

δ(κ′)−−−→ τ2)µ ∆; Φ; Γ `κ2
ε e2 : τ1 (ε t µ) ≤ δ µ E τ2

∆; Φ |= κ
.= κ′ +̂ κ1 +̂ κ2 +̂ ((ε = C) ? 1 : 0) +̂ ((µ = C) ? 1 : 0) +̂ ((ε = S ∧ µ = C) ? costdeepref(τ2) + 2 : 0)

∆; Φ; Γ `κε e1 e2 : τ2
app

∆; Φ; Γ `κeε e : (τ1 + τ2)µ ∆; Φ; Γ, x : τ1 `κ
′

εtµ e1 : τ ∆; Φ; Γ, y : τ2 `κ
′

εtµ e2 : τ
∆; Φ |= κ

.= κe +̂ κ′ +̂ ((ε = C) ? 1 : 0) +̂ ((µ = C) ? 1 : 0) +̂ ((ε = S ∧ µ = C) ? costdeepref(τ) + 2 : 0)
∆; Φ; Γ `κε case(e, x.e1, y.e2) : τ

case

∆; Φ; Γ `κ1
ε e : τ ′ ∆; Φ `κ2

ε τ ′ v τ ↪→ g ∆; Φ |= κ1 +̂ κ2 ≤̇ κ

∆; Φ; Γ `κε e : τ
v

∆; Φ; Γ `κ
′

ε e : τ ∀x ∈ Γ ∆; Φ ` Γ(x) v Γ(x)�� ∆; Φ |= κ
.= (ε = S ? 0 : κ′)

∆; Φ; Γ,Γ′ `κε e : τ�� nochange

∆; Φ; Γ `κ1
ε e1 : τ�� ∆; Φ; Γ `κ2

ε e2 : list [n]α τ ∆; Φ |= κ
.= κ1 +̂ κ2

∆; Φ; Γ `κε e1 :: e2 : list
[
n +̂ 1

]α
τ

cons1

∆; Φ; Γ `κ1
ε e1 : τ ∆; Φ; Γ `κ2

ε e2 : list [n]α−1
τ ∆; Φ |= α >̇ 0 ∆; Φ |= κ

.= κ1 +̂ κ2

∆; Φ; Γ `κε e1 :: e2 : list
[
n +̂ 1

]α
τ

cons2

∆; Φ; Γ `κeε e : list [n]α τ
∆; Φ ∧ n .= 0; Γ `κ

′

ε e1 : τ ′ ∆, i :: ι; Φ ∧ n .= i+ 1; Γ, h : τ��, tl : list [i]α τ `κ
′

ε e2 : τ ′

∆, i :: ι, β :: ι; Φ ∧ n .= i+ 1 ∧ α .= β + 1; Γ, h : τ, tl : list [i]β τ `κ
′

ε e2 : τ ′ ∆; Φ |= κ
.= κe +̂ κ′ +̂ (ε = C) ? 1 : 0

∆; Φ; Γ `κε caseL e of nil → e1 | cons(h, tl) → e2 : τ ′
caseL

Figure 4: Selected tying rules

The dynamic semantics are the standard call-by-value semantics thus their detailed presentation is
omitted. The big step evaluation judgment is modified in order to return the cost of the evaluation. Note
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`κε e : τ v1

≈

` peq : ‖τ‖ v2

evaluates to

evaluates in c steps to

if ε = C then c ≤ κ

translates to

(a) First run

`κS e : τ v1

≈

` peq : ‖τ‖ v2

evaluates to

change propagates in c steps to
c ≤ κ

translates to

(b) Incremental run under some input changes

Figure 5: Schematic representation of the basic properties of the translation

that application of destructors incurs unary cost while application of constructors incurs zero cost.

1.3 Overview of the contributions

The main contribution of this internship focuses on proving that the cost derived by a typing derivation
in CostIt is sound with respect to a concrete change propagation semantics. To this end, we designed a
target language, namely saML, that provides the infrastructure for incremental computation and we defined
a translation that given a CostIt program, transforms it to a self-adjusting saML program. The soundness
proof shows that the cost of change propagation in the saML program is less or equal to the cost derived by
the type system.

The translation is type directed and it is defined by induction on the typing derivation. Similar to the
typing rules, the translation scheme also has two modes, one for change propagation and one for from-
scratch evaluation. During translation in change propagation mode a CostIt program is translated to a saML
program that evaluates to the same result as the source program. Moreover, given a change in the inputs
the target program can propagate changes to the output with cost less or equal to the cost derived by the
type system. Change propagation in the target program yields the same result as complete re-evaluation
of the source program under the same input changes. During translation in from-scratch mode, a CostIt
program is transformed to a saML program that evaluates to the same result as the source program and its
execution time is less or equal to the cost derived by the type system. Note that in this mode the derived
program is not self-adjusting. The above are represented schematically in fig. 5.

The rest of the report is structured as follows: in section 2 we give an example of the translation, in
section 3 we present the static and dynamic semantics of the target language, in section 4 we present the
translation and the soundness results. Finally, in sections 5 and 6 we discuss related and future work.

2 Self-adjusting computation by example
Continuing the example of the higher-order function map we gave earlier, we will present the main concepts
of our translation by explaining the translation of map.

Our goal is to translate map to a self-adjusting saML program that can update in place the parts of
the output that depend on data that can change. Furthermore the translated function should not incur a
change propagation cost that is greater than the cost in the cost annotation of its type. In order to be able to
differentiate between values that can change and values that cannot and also be able to update changeable
values we will enclose values that can change, i.e. values of type (A)C for some A, in mutable references.
Moreover, since in the list at most α elements can change and α has to be less or equal to the total number of
elements in the list, we need a way to differentiate between elements in a list that can change and elements
that cannot. We achieve this by translating the original list to a list of a sum type whose left variant will
hold values that are stable and whose right variant values that can change. The type of map in the target
language, that reflects the above modifications is
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map f e = caseL e of
| [] → []
| h :: tl → f h :: map f tl

(a)

pmapq f e = caseL e of
| [] → []
| h :: tl →

case h of
| hl → (inl !(f (ref hl))) :: pmapq f tl
| hr → let l = f hr in

let () = push(l, λ(). f hr) in
inr l :: pmapq f tl

(b)

Figure 6: Mapping function in the source (a) and the target language (b).

(ref int −→ ref int) −→ list (int + ref int) −→ list (int + ref int)
Since the function passed as argument expects an argument of ref int whenever we hit an element that

is stable, and thus of type int, we will have to put it in a reference cell before we apply the function to it.
Furthermore, since the result will be stable, we will dereference the result of the application before putting it
in the left variant of the sum type. Note that since the input of the function is stable and the body function
is stable and also does not capture any variables that can change from the environment, the application
will always yield the same result. When we hit an element that can change, we can immediately apply the
function to it and wrap the result in the right variant of the type. Furthermore, since the input can change
the result on the application needs to be reevaluated during change propagation. During the first run, we
create a new location in which we store the result of the application, after dereferencing it. This is also
the location that we put in the list computed by map. During change propagation we will recompute the
application and we will store the new result, after dereferencing it, to the location we created during the
first run. The list we computed during the first run will now contain the updated location.

In order to store the computations that need to be re-executed during change propagation and the
locations that need to be updated, we modify the language runtime in order to maintain a global queue
in which we push pairs of locations and closures. We enrich the language with new primitives in order to
be able to manipulate the queue. We defer the presentation of the static and dynamic semantic of these
new primitives untilsection 3. During change propagation, we pop an element from the queue, we evaluate
the closure and we update in place the corresponding location with the result computed by the closure.
We repeat until the queue is empty. In our example we push in the queue the application of the argument
function to the head of the list, in order to re-execute during change propagation. The translated code is
shown in fig. 6.

We can now show a glimpse of how the function will execute when applied to a list. Assume that we want
to apply λx. x + 1 to each element of a four element list, of which at most two can change. This function
can be given the type ((int)C C(3)−−−→ (int)C)� and it is translated to λx. ref (!x+ 1). Note that the function
is executed from-scratch during change propagation and although addition incurs only a unit cost we also
have to account for the cost of referencing and dereferencing that sums up to two additional units. There
is no fundamental reason why we picked a function that executes from scratch, we could have considered
a function that can change propagate but that would complicate our example. The partial application
map λx. x+ 1 can now be given the type

list [4]2 (int)C S(3·2)−−−→ list [4]2 (int)C

We want to make sure that the cost of change propagation will be at most six. Assume that we want
to evaluate the expression map (λx. x + 1) [x1, x2, x3, x4] in the environment x1 : (int)S 7→ 1, x2 :
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(int)C 7→ 42, x3 : (int)S 7→ 3, x4 : (int)C 7→ 4. This would translate to evaluating the expression
pmapq λx. ref (!x + 1) [inl x1, inr x2, inl x3, inr x4] in the environment x1 : int 7→ 1, x2 : int 7→
l1, x3 : int 7→ 3, x4 : int 7→ l2 and the store l1 : int 7→ 42, l2 : int 7→ 4.

After the first run, we obtain the store l1 : int 7→ 42, l2 : int 7→ 4, l′1 : int 7→ 43, l′2 : int 7→ 5 (we omit
the locations that are not present in the input or the output). The output list is [inl 1, inr l′1, inl 4, inr l′2]
and the global queue is

[(l′1, λ(). (λx. ref (!x+ 1)) l1), (l′2, λ(). (λx. ref (!x+ 1)) l2]

Assume now that we update the input and want to recompute the result. The updated store is l1 : int 7→
2, l2 : int 7→ 4. The change propagation mechanism will run the closures in the queue in the order that they
were pushed and it will update the location in the first component of each pair with the value contained in
the location that is returned from the closure. After running the closures and updating the locations the
new store would be l1 : int 7→ 2, l2 : int 7→ 4, l1 : int 7→ 3, l2 : int 7→ 5. The references in the output list
now point to locations that contain values that correspond to the updated result. Furthermore, the cost of
pure computation (without taking into account the cost of queue operations or updating the references) is
exactly 6.

3 Semantics of the target language
The target language is a simply typed lambda calculus with general references. The references are added to
the target language in order to hold the values that can potentially change during subsequent runs. During
change propagation only the value of the memory locations that the references point to will be recomputed
and the references will be updated in place. Since the type system tracks the values that can potentially
change between two runs and ensures that their types are annotated as changeable the translation scheme
can ensure that every changeable component of the output will be stored in a memory location.

The language is also modified to add support for change propagation. The runtime of the language main-
tains a global queue that contains the computations that need to be re-executed during change propagation.
The elements of the queue are pairs of a list of references and a function from unit to a list of references.
During change propagation the recorded computation will be evaluated and will return a list of locations
that will have the same length as the list in the first component and moreover elements in the same position
in the two lists will have the same type. Note that this constraint is not enforced by the type system, but it
will be an invariant of the translation. The values of the locations in the first list have to be updated with
the values of the corresponding locations in the list that results from evaluation of the function.

We enrich the language with new primitives that allow us to interface with the queue. In order to be
able to type these new primitives we need to be able to type lists that contain references of any type. Thus
we need to enrich the language with a non-homogeneous list construct. Note that elimination of this new
construct only happens during change propagation, which is a low level algorithm expressed outside the
target language. Thus, we do not need to add semantics for the elimination of this new construct to the
language. Modifying the language to also include destruction of non-homogeneous lists is not fundamentally
hard but it would require enriching the type system with existential types.

In the remaining section we will present the semantics of the new primitives, that allow us to push to and
empty the queue, and also the semantics of non-homogeneous lists that allow us to type the new primitives.
The semantics of the rest of the language are fairly standard. The interested reader can refer to the technical
appendix for a more detailed presentation.

3.1 Static and dynamic semantics

The semantics of non-homogeneous lists are largely similar to those of homogeneous lists. The only difference
is that we allow inserting elements of arbitrary type and that the type of non-homogeneous list does not
carry type information for the elements.
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The primitive push expects a tuple of a non-homogeneous list and a function from unit to a non-
homogeneous list, and pushes it to the global queue. The result of this computation is of unit type. The
primitive drop takes as an argument an expression of an arbitrary type, empties the current queue, and
returns the value that the given expression evaluates to. Note that during from-scratch evaluation we do
not pop from the queue and so there is no need for a primitive to perform a popping operation. The typing
rules for the new constructs are straight-forward and can be seen in fig. 7.

In fig. 8 we present the big-step dynamic semantics. The usual big-step semantics are modified to also
return the queue and the cost of the computation. Unlike stores, queues are not threaded through the big-
step rules. Instead, in order to derive the final queue, we append the queues that result from the premises
of the rules. The evaluation is deterministic and the allocator when given a certain store will always return
the same location, which should not be already present in the store.

Γ ` nil : list
Γ ` e : τ Γ ` es : list

Γ ` cons e es : list
Γ ` e : τ

Γ ` drop(e) : τ
Γ ` e : list Γ ` f : unit −→ list

Γ ` push(e, f) : unit

Figure 7: Typing rules for the target language

nil, σ ⇓L nil, σ, ∅, 0
e, σ ⇓L v, σ′, Q1, c1 es, σ ⇓L vs, σ′, Q2, c2

cons e es, σ ⇓L cons v vs, σ′′, Q1 +Q2, c1 + c2

e, σ ⇓L v, σ′, Q, c
drop(e), σ ⇓L v, σ′, ∅, c

e, σ ⇓L v, σ′, Q, c
push(e, f), σ ⇓L (), σ, Q+ [(e, f)], c

e, σ ⇓L v, σ′, D, c l = freshL(σ′)
ref e, σ ⇓L l, σ′[l 7→ v], D, c+ 1

e1, σ ⇓L fix f(x). e, σ′, D1, c1
e2, σ

′ ⇓L v′, σ′′, D2, c2 [x 7→ v′, f 7→ fix f(x). e]e, σ′′ ⇓L fix f(x). e′1, σ′′′, D3, c3

e1 e2, σ ⇓L v, σ′′′, D1 +D2 +D3, c1 + c2 + c3 + 1

Figure 8: Big-step semantics of the target language

3.2 Change Propagation

The main idea behind the change propagation algorithm is to run each computation that has been pushed to
the queue and update the corresponding locations with the new values, as described earlier in this section.
Note that, unlike previous work, we do not construct a dependency graph that tracks which values depend
on values that have been changed. Although that would allow us to only update the values that depend on
values that have actually changed, this information is not statically known and thus the type system counts
the cost of recomputing any value that can potentially change, regardless of whether the value actually
changes or not. Therefore, an algorithm that recomputes all the values that can potentially change suffices
to show that the cost incurred by the type system is sound.

For change propagation to be sound it is imperative that the locations on which the result of a deferred
computation depends have already been updated before the computation gets evaluated. Our translation
will have the invariant that if a pair has been pushed to the queue after another one, then it should be
the case that all of the locations in the first component of the first pair were created after the second pair
was pushed to the queue. Since the result of a computation cannot depend on a location that has not
been created yet, it should be the case that no locations that affect the result of a deferred computation
are updated after the computation gets evaluated. Since all of the locations that are changeable will get
updated eventually, it should also be the case that all the locations on which a computation depends will
have been updated before the latter is evaluated.
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To avoid dealing with location updates in the proofs, instead of updating the value of the already existing
locations we create freshly allocated locations that hold the updated value and we maintain a partial bijection
that maps the locations holding the old values to the corresponding new ones. The deferred computation will
be responsible for returning a list of freshly allocated locations that hold the new values of the corresponding
old locations. To get the updated result it suffices to apply the partial bijection to it in order to rename the
old locations to the new ones.

The change propagation algorithm works as follows. Assume that the initial store is σi and after the
first run we obtain a value v and a store σf . Let σc be the updated store and dom(σi)∩dom(σc) = ∅. Let also
β be a partial bijection that maps locations from the initial store to the locations of the updated store that
hold the updated value. If a location does not belong to the domain of the bijection then its value does not
change. We give as input to the change propagation algorithm the queue, the updated store and the store
that we obtain after the first run. In the case that the domain of the bijection is empty then no update
has happened so there is no need to reevaluate the deferred computations. In the presence of updates, the
algorithm will pop a pair from the queue and will evaluate the closure after applying the partial bijection to
it in order to rename the locations that appear free and whose value has changed. Since some locations that
appear free may not have changed, and thus may not have a mapping in the updated store, the closure is
evaluated in the updated store extended with the store that is obtained from first run. After the evaluation
we set the updated store to be the store that results from the evaluation of the closure after σf is removed.
Note that in the absence of store updates, the store that results from the evaluation is always an extension
of the input store. The bijection is extended to map each of the locations in first component of the pair to
the corresponding locations in the list that results from the evaluation of the closure. In the case that the
two lists are of different length or the new bijection is not well-defined the execution of change propagation
will result in a run-time error. Such erroneous programs however will never arise from the translation, as
shown by our soundness theorem. The change propagation algorithm can be seen in algorithm 1.

Algorithm 1 Q, σc, σf , β  L σ
′
f , β

′, c

1: if β = ∅ ∧ σc = ∅ then
2: return (σf , β, 0)
3: else
4: σ′f ← σc
5: β′ ← β
6: while Q 6= ∅ do
7: (~l, f)← pop(Q)
8: if β′(f) (), σ′f + σf ⇓L ~l′, σ′′f , ∅, c′ then
9: σ′f ← σ′′f \ σf

10: β′ ← (β′ ⊗~l 7→ ~l′)
11: c← c+ c′

12: else
13: error()
14: end if
15: end while
16: return (σ′f , β′, c)
17: end if

4 Translation
The translation transforms a source program into a target program that is capable of propagating changes
in the inputs (free variables) to the output. The target program stores each changeable value in a reference
cell and during change propagation only the values of memory locations need to be updated. The trans-
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lation takes care of creating new memory locations to store values that need to be updated and pushing
computations that need to be reevaluated during change propagation in the queue.

4.1 Translating Types

An invariant that should be maintained by the translation is that the target program should be typable
with a target type that corresponds to the type of the source program. This correspondence is obtained by
translating the source language types to target language types. The main idea behind translating types is to
translate a changeable type to a mutable reference. Moreover, in order to distinguish between elements of a
list that can change and elements that cannot, we translate lists of type τ to lists of type ‖τ��‖+‖τ‖, where
‖ · ‖ is the translation function. When an element of the list is of the left variant then its value is stable and
its type is stabilized in order to reflect this. When the element is of the right variant then the value can be
changeable. Another point that needs careful handling is universal quantifiers, as their introduction rules
in the type system incur zero cost in both change propagation and from scratch cost. To reflect this in the
target language, for all quantified types are translated to functions of a unit type argument. For the rest of
the types the translation is defined as a homomorphic erasure of the indexes.

‖int‖A = int
‖τ1 + τ2‖A = ‖τ1‖+ ‖τ2‖
‖τ1

µ(κ)−−−→ τ2‖A = ‖τ1‖ −→ ‖τ2‖

‖∀i
µ(κ)
:: S. τ‖A = unit −→ ‖τ‖

‖(A)C‖ = ref ‖A‖A
‖(A)µ‖ = ‖A‖A if µ = S ∨ µ = �
‖unit‖ = unit
‖τ1 × τ2‖ = ‖τ1‖ × ‖τ2‖
‖list [n]α τ‖ = list ‖τ‖+ ‖τ��‖
‖∃i. τ‖ = ‖τ‖
‖C → τ‖ = ‖τ‖
‖C ∧ τ‖ = ‖τ‖

Figure 9: Translation of types

4.2 Translating Expressions

The translation of the expressions is defined by induction on the typing derivation. The translation should
enforce that a changeable value is stored in a mutable reference and that the closure that recomputes its
value is pushed to the queue. In this subsection we will discuss and present the most interesting cases of
the translation. For a full presentation of the rules the reader can refer to the technical appendix. Selected
rules are presented in fig. 28.

For constructors of pair and sum type construction, rules inl and pair, the translation is homomorphi-
cally defined using the translation of the premises. The derived cost is the sum of the cost annotations of the
premises. For pair destruction, that corresponds to rule fst, in from-scratch mode, we count the cost that is
obtained by the premises and we add a unit to it that corresponds to the application of the destructor. In
change propagation mode we only need to count the cost of evaluating the premises as the result is updated
in place and the constructor will not be reapplied. The translation of sum type destruction when the scru-
tinee is stable, rule case1, is straight forward and the cost is derived using the same principles as in pair
destruction. When the scrutinee is changeable the control flow may follow a different path in a subsequent
run for which there are no recorded computations and thus the result cannot be updated in place by propa-
gating changes. Therefore, in change propagation mode, the result of the expression should be recomputed
from-scratch in each subsequent run. During the first run the result of the expression is computed and each
changeable component is placed in freshly allocated references. Subsequently, the closure that computes
the output of the application and creates new locations for the changeable components will be pushed to
the queue along with the list of locations that where previously allocated. During change propagation the
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closure will be evaluated and the old locations will be mapped to the corresponding new ones. This is
illustrated in the rule case2. The meta-function deep(·, ·) is responsible for generating code that stores
the changeable parts of the given expression to the new locations and return a reconstructed expression that
contains the new locations and a (non-homogeneous) list consisting of these locations. The meta-function
deep′(·, ·) is similar with the difference that it only returns a location list and does not reconstruct the
expression. The cost derived by the type system in this case is the cost of change propagating changes in
the scrutiny, the cost of evaluating from-scratch the path that is taken, the cost associated with creating
new references, and also the three additional units that correspond to dereferencing the location that holds
the value of the scrutinee, the destructor application and the application of the closure. When the scrutinee
is changeable and the typing is in from-scratch mode then the translation follows the same principles with
the case when the scrutinee is stable, with the only difference that before case analyzing the scrutinee the
translation should dereference it and the derived cost should be modified to reflect this.

The translation of function abstraction is defined as the abstraction of the translation of the function
body. The change propagation (resp. from-scratch evaluation) cost in the function type is the cost that is
obtained by the typing of its body in change propagation (resp. from-scratch evaluation) mode.

For function application we should again consider the cases where the function applied is in change
propagation or from scratch mode separately. We should also distinguish between the cases where the
function is itself changeable or not. In change propagation mode, when a change propagation mode function
that itself is not changeable is applied to an argument, it is translated to the application of the translation of
the function to the translation of the argument. This case corresponds to the rule app1. Since the function
is in change propagation mode its translated code will propagate potential changes to the argument and to
the variables that are captured in its body to the result. The derived cost is the sum of the costs that are
obtained by the premises plus the cost annotation in the function type, that is the upper bound on the cost
of propagating changes through the function body. When a from-scratch mode function that is not itself
changeable is applied to an argument then the result should be recomputed during change propagation.
The translation will evaluate the function and the argument and then it will apply the former to the latter
creating fresh locations to store the changeable components of the result. This is illustrated in the rule
app2. The cost derived by the type system in this case is the cost of change propagating changes in the
function and in the argument, the cost of applying the function, and also the cost associated with creating
new references. The three additional units represent the cost of dereferencing and applying the function,
and applying the recorded closure. In the case that the function is itself changeable, that corresponds to the
rule app3, the only difference to the above is that in order to apply the function the reference that stores
it is dereferenced.

Function application in from scratch mode translates to function application of the translation of the
function to the translation of the argument. In the case that the function is changeable its translation is
dereferenced before applied. The derived cost is the cost of evaluating the function, the cost of evaluating the
argument, the cost of the function application and the cost of dereferencing the function if it is changeable.

The translation of primitive function application is similar to the translation of from-scratch mode
function application, as primitive functions are by default evaluated from-scratch. Since primitive functions
are closed when the input is stable the output will also be stable. When one of the inputs is changeable
then the result is also changeable and the whole expression is re-executed during change propagation.

The translation of list construction is straight-forward. When a stable element is cons-ed in the list then
its translation is wrapped in the constructor of the left variant of the sum type and it is cons-ed with the
translation of the rest of the list. If a changeable element is inserted in the list then its translation is wrapped
in the constructor of the right variant. Destruction of lists translates to destruction of the translation of
the scrutiny. In the cons case the head should be destructed further in order to determine if it is stable or
changeable. If the head is stable (resp. changeable) then the translation that corresponds to the typing of
stable (resp. changeable) case is returned.

In the nochange case the expression is typeable in a stable context and thus itself cannot change, as
explained in the introduction. The translation will be the translation of the expression with the addition
that the computation accumulated in the queue during its evaluation will be discarded and the result will be
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converted in order to have a stable type. Since no change propagation will happen, in the change propagation
mode the cost is zero. In the from-scratch mode the cost is the cost of evaluating the expression plus the
unary cost induced by the queue discard.

Lastly, we discuss the translation of expressions that are typed using the subtyping rule. Given an
expression of the target language whose type is the translation of the subtype, we need to convert it to an
expression whose type is the translation of the supertype. To this end, we define a coercion meta-function
that given a target expression of the subtype will generate code that converts it to an expression of the
supertype. This meta-function is defined by induction on the subtyping derivation. The generated code
may perform operations that incur an extra from scratch evaluation cost. Correspondingly, the code may
push extra computations to the queue that incur an extra change propagation cost. The cost that is derived
by the subtyping derivation reflects the extra cost that is incurred by the code generated by the coercion.
The definition of the coercion meta-function for selected cases can be seen in fig. 11.

4.3 Soundness

In this section we will present the main soundness properties of the translation scheme. More specifically, we
will prove that the translated program is a well typed program and that evaluation and change propagation
in the translated program produce results that are correct with respect to the semantics of the source
program. Furthermore, we will prove that the cost incurred by evaluation and change propagation are less
or equal to the cost derived by the type system in from-scratch and change propagation mode respectively.

Our first theorem states that given a well-typed CostIt program its translation exists and furthermore it
is a well-typed program in the target language.

Theorem 1 (Totality of the translation and type soundness)
Let ∆; Φ; Γ `κε e : τ . Then ∆; Φ; Γ `κε e : τ ↪→ peq and ‖Γ‖ ` peq : ‖τ‖

Proof. The proof is straight-forward and proceeds by induction on the typing derivation of the source
program. Note that in certain cases we need to prove the type soundness of the meta-functions used by the
translation.

Before proceeding to stating and proving the soundness of the translation and the type system we
should define a notion of similarity between source and target values. In order to prove correctness of
the evaluation of the translated program we will define a relation that relates a source value and a target
value that are similar under a store. Two expressions are similar if they evaluate to similar values. In
order to prove correctness of change propagation, we will define a two-way-similarity relation that relates
two source expressions, one that represents the initial expression and a second one that represents the
updated expression and a target expression, under two stores – the initial and the updated one – and a
bijection between their domains. The three expressions are related if the target expression is similar under
the first store with the first source expression and moreover if the target expression, after applying the
partial bijection to its free locations, is similar under the combination of the two stores to the second source
expression. Furthermore for values that are not allowed to change, i.e. they have a stable type, all the three
expressions must be similar. Two expressions are two-way-similar if they evaluate to two-way-similar values.
We define the two relations by induction on the type of the values. Their definitions can be seen in fig. 12
and fig. 13.

We can now state the soundness theorems. Our first theorem states the soundness of the translation
and cost derived by the type system in from-scratch mode. To ease readability we state the theorem when
there is only one free variable in the environment but it can be generalized for any number of free variables.

Theorem 2 (Type and translation soundness, C mode)
Assume that ·; ·;x : τ ′ `κC e : τ ↪→ peq and vs ≈τσ vt. Then there exist v′s, v′t, σ′, j and c, such that (1)
[x 7→ vs]e ⇓ v′s, j (2) [x 7→ vt]peq, σ ⇓ v′t, σ′, ∅, c, (3) |= c ≤̇ κ and (4) v′s ≈τσ′ v′t.
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∆; Φ; Γ `κ1
ε e1 : τ1 ↪→ pe1q ∆; Φ; Γ `κ2

ε e1 : τ2 ↪→ pe2q ∆; Φ |= κ
.= κ1 +̂ κ2

∆; Φ; Γ `κε (e1, e2) : τ1 × τ2 ↪→ (pe1q, pe2q)
pair

∆; Φ; Γ `κε e : τ1 ↪→ peq
∆; Φ; Γ `κε inl e : (τ1 + τ2)S ↪→ inl peq

inl
∆; Φ; Γ `κ

′

ε e : τ1 × τ2 ↪→ peq ∆; Φ |= κ
.= (κ′ +̂ ε = C ? 1 : 0)

∆; Φ; Γ `κε fst e : τ1 ↪→ fst peq
fst

∆; Φ; Γ, f : (τ1
δ(κ)−−−→ τ2)S, x : τ1 `κδ e : τ2 ↪→ peq

∆; Φ; Γ `0
ε fix f(x). e : (τ1

δ(κ)−−−→ τ2)S ↪→ fix f(x). peq
fix1

∆; Φ; Γ `κ1
S e1 : (τ1

S(κ′)−−−→ τ2)µ ↪→ pe1q ∆; Φ; Γ `κ2
S e2 : τ1 ↪→ pe2q µ ≤ S ∆; Φ |= κ

.= κ′ +̂ κ1 +̂ κ2

∆; Φ; Γ `κS e1 e2 : τ2 ↪→ pe1q pe2q
app1

∆; Φ; Γ `κ1
S e1 : (τ1

C(κ′)−−−→ τ2)C ↪→ pe1q
∆; Φ; Γ `κ2

S e2 : τ1 ↪→ pe2q C E τ2 ∆; Φ |= κ
.= κ′ +̂ κ1 +̂ κ2 +̂ costdeepref(τ2) +̂ 3

∆; Φ; Γ `κS e1 e2 : τ2 ↪→
let l = pe1q in let x = pe2q in let r = deep(!l x, τ2) in
let () = push(snd r, λ().deep′(!l x, τ2)) in fst r

app2

∆; Φ; Γ `κ1
C e1 : (τ1

C(κ′)−−−→ τ2)S ↪→ pe1q ∆; Φ; Γ `κ2
C e2 : τ1 ↪→ pe2q C E τ2 ∆; Φ |= κ

.= κ′ +̂ κ1 +̂ κ2 +̂ 1
∆; Φ; Γ `κC e1 e2 : τ2 ↪→ pe1q pe2q

app5

∆; Φ; Γ `κeε e : (τ1 + τ2)µ ↪→ peq ∆; Φ; Γ, x : τ1 `κ
′

ε e1 : τ ↪→ pe1q
∆; Φ; Γ, y : τ2 `κ

′

ε e2 : τ ↪→ pe2q µ ≤ S ∆; Φ |= κ
.= κe +̂ κ′ +̂ ((ε = C) ? 1 : 0)

∆; Φ; Γ `κε case(e, x.e1, y.e2) : τ ↪→ case(peq, x.pe1q, y.pe2q)
case1

∆; Φ; Γ `κeS e : (τ1 + τ2)C ↪→ peq ∆; Φ; Γ, x : τ1 `κ
′

C e1 : τ ↪→ pe1q
∆; Φ; Γ, y : τ2 `κ

′

C e2 : τ ↪→ pe2q C E τ ∆; Φ |= κ
.= κe +̂ κ′ +̂ costdeepref(τ) +̂ 3

∆; Φ; Γ `κS case(e, x.e1, y.e2) : τ ↪→
let l = peq in let r = deep(case(!l, x.pe1q, y.pe2q), τ) in
let () = push(snd r, λ().deep′(case(!l, x.pe1q, y.pe2q), τ)) in
fst r

case2

∆; Φ; Γ `κeε e : (τ1 + τ2)C ↪→ peq
∆; Φ; Γ, x : τ1 `κ

′

C e1 : τ ↪→ pe1q ∆; Φ; Γ, y : τ2 `κ
′

C e2 : τ ↪→ pe2q µ E τ ∆; Φ |= κ
.= κe +̂ κ′ +̂ 2

∆; Φ; Γ `κC case(e, x.e1, y.e2) : τ ↪→ case(!peq, x.pe1q, y.pe2q)
case3

∆; Φ; Γ `κ1
ε e : τ ′ ↪→ peq ∆; Φ `κ2

ε τ ′ v τ ↪→ g ∆; Φ |= κ1 +̂ κ2 ≤̇ κ

∆; Φ; Γ `κε e : τ ↪→ g(peq)
v

∆; Φ; Γ `κ
′

ε e : τ ↪→ peq ∀x ∈ Γ ∆; Φ ` Γ(x) v Γ(x)�� ∆; Φ |= κ
.= (ε = S ? 0 : κ′)

∆; Φ; Γ,Γ′ `κε e : τ�� ↪→ drop(conv(peq, τ, τ��))
nochange

∆; Φ; Γ `κ1
ε e1 : τ�� ↪→ pe1q ∆; Φ; Γ `κ2

ε e2 : list [n]α τ ↪→ pe2q ∆; Φ |= κ
.= κ1 +̂ κ2

∆; Φ; Γ `κε e1 :: e2 : list
[
n +̂ 1

]α
τ ↪→ inl pe1q :: pe2q

cons1

∆; Φ; Γ `κ1
ε e1 : τ ↪→ pe1q ∆; Φ; Γ `κ2

ε e2 : list [n]α−1
τ ↪→ pe2q ∆; Φ |= α >̇ 0 ∆; Φ |= κ

.= κ1 +̂ κ2

∆; Φ; Γ `κε e1 :: e2 : list
[
n +̂ 1

]α
τ ↪→ inr pe1q :: pe2q

cons2

∆; Φ; Γ `κeε e : list [n]α τ ↪→ peq
∆; Φ ∧ n .= 0; Γ `κ

′

ε e1 : τ ′ ↪→ pe1q ∆, i :: ι; Φ ∧ n .= i+ 1; Γ, h : τ��, tl : list [i]α τ `κ
′

ε e2 : τ ′ ↪→ pe2ql
∆, i :: ι, β :: ι; Φ ∧ n .= i+ 1 ∧ α .= β + 1; Γ, h : τ, tl : list [i]β τ `κ

′

ε e2 : τ ′ ↪→ pe2qr
∆; Φ |= κ

.= κe +̂ κ′ +̂ (ε = C) ? 1 : 0

∆; Φ; Γ `κε caseL e of nil → e1 | cons(h, tl) → e2 : τ ′ ↪→
caseL peq of
| nil → pe1q
| cons(s, tl) → case(s, h.pe2ql, h.pe2qr)

caseL

Figure 10: Translation rules
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∆; Φ |= κ +̂ costconv(τ��
1 , τ1) +̂ (δ = C) ? (1 +̂ costconv(τ2, τ

��
2 )) : 0 ≤̇ κ′

∆; Φ `0
ε (τ1

δ(κ)−−−→ τ2)� v (τ��
1

δ(κ′)−−−→ τ��
2 )� ↪→ λe.λx. conv(e conv(x, τ��

1 , τ1), τ2, τ
��
2 )

→ 1

∆; Φ `κ1
δ τ ′1 v τ1 ↪→ g1 ∆; Φ `κ2

δ τ2 v τ ′2 ↪→ g2 ∆; Φ |= κ +̂ κ1 +̂ κ2 +̂ (δ = C) ? 1 : 0 ≤ κ′

∆; ΦA `0
ε τ1

δ(κ)−−−→ τ2 v τ ′1
δ(κ′)−−−→ τ ′2 ↪→ λe.fix f(x).g2(e g1(x))

→ 2

∆; Φ |= κ
.= (ε = C) ? 1 +̂ ˆmax(costconv(τ1, τ

��
1 ), costconv(τ2, τ

��
2 )) : 0

∆; Φ `κε (τ1 + τ2)� v (τ��
1 + τ��

2 )� ↪→ λe.case(e, x.inl conv(x, τ1, τ
��
1 ), y.inr conv(y, τ2, τ

��
2 ))

+1

∆; Φ |= α
.= 0

∆; Φ `0
ε list [n]α τ v list [n]α τ�� ↪→ λe.e

l1

∆; Φ |= n
.= n′ ∆; Φ |= α

.= α′ ∆; Φ `κ
′

S τ v τ ′ ↪→ g ∆; Φ |= κ
.= α ·̂ κ′

∆; Φ `κS list [n]α τ v list [n′]α
′

τ ′ ↪→ λe.map λz. case(z, x.inl conv(drop(g(conv(x, τ��, τ))), τ ′, τ ′��), y.inr g y) e
l2-S

∆; Φ |= n
.= n′ ∆; Φ |= α

.= α′

∆; Φ `κ
′

C τ v τ ′ ↪→ g ∆; Φ |= κ
.= (n ·̂ κ′ +̂ (n −̂ α) ·̂ (costconv(τ��, τ) +̂ costconv(τ ′, τ ′��) +̂ 1))

∆; Φ `κC list [n]α τ v list [n′]α
′

τ ′ ↪→ λe.map λz. case(z, x.inl conv(g(conv(x, τ��, τ)), τ ′, τ ′��), y.inr g y) e
l2-C

∆; Φ |= µ ≤ µ′ ∆; Φ |= κ
.= costconv((A)µ, (A)µ

′
)

∆; Φ `κε (A)µ v (A)µ
′
↪→ λe.conv(e, (A)µ, (A)µ

′
)

µ
∆; ΦA `κε A v A′ ↪→ g µ = S ∨ µ = �

∆; Φ `κε (A)µ v (A′)µ ↪→ g
C1

∆; ΦA `κ
′

S A v A′ ↪→ g ∆; Φ |= κ
.= κ′ +̂ 2

∆; Φ `κS (A)C v (A′)C ↪→ λe.let l = ref g(!e) in let () = push([l], λ(). ref g(!e)) in l
C2-S

∆; Φ `κ1
ε τ1 v τ2 ↪→ g1 ∆; Φ `κ2

ε τ2 v τ3 ↪→ g2 ∆; Φ |= κ
.= κ1 +̂ κ2

∆; Φ `κε τ1 v τ3 ↪→ λe.g2(g1(e))
tran

Figure 11: Coercion meta-function

n ≈int
σ n

v1 ≈Aσ v2 if µ = S or µ = �
v1 ≈(A)µ

σ v2

vs ≈Aσ σ(lt)
vs ≈(A)C

σ lt () ≈unit
σ ()

v1l ≈τ1
σ v2l v1r ≈τ2

σ v2r

(v1l, v1r) ≈τ1×τ2
σ (v2l, v2r)

|= n
.= 0 ∧̇ α .= 0

[] ≈list[n]α τ
σ []

vs ≈τ
��

σ vt vss ≈list[n−1]α τ
σ vst |= 0 <̇ n

vs :: vss ≈list[n]α τ
σ inl vt :: vts

vs ≈τσ vt vss ≈list[n−1]α−1 τ
σ vst |= 0 <̇ n |= 0 <̇ α

vs :: vss ≈list[n]α τ
σ inr vt :: vts

∃I S. ` I :: S ∧ vs ≈τ [I/t]
σ vt

vs ≈∃t. τσ vt

vs ≈τ1
σ vt

inl vs ≈τ1+τ2
σ inl vt fix f(x). es ≈τ1

S(κ)−−−→τ2
σ fix f(x). et

∀σ′ w σ vc vt. vs ≈τ1
σ′ vt ⇒ es[x 7→ vc, f 7→ fix f(x). es] ∼τ2

σ′ et[x 7→ vt, f 7→ fix f(x). et]

fix f(x). es ≈τ1
C(κ)−−−→τ2

σ fix f(x). et Λ. es ≈∀t
S(κ)
:: S. τ

σ Λ. et

∀I S. ` I :: S ⇒ es ∼τ [I/t]
σ et

Λ. es ≈∀t
C(κ)

:: S. τ
σ Λ. et

es ⇓ vs, j ∀σ′ w σ. et, σ
′ ⇓ vt, σ′, ∅, c ∧ vs ≈τσ′ vt

es ∼τσ et

Figure 12: Similarity ralation
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(n, n) ≈int
(σ, σ′, β) n

(vi, vc) ≈A(σ, σ′, β) vt if µ = S or µ = �

(vi, vc) ≈(A)µ
(σ, σ′, β) vt

vi ≈Aσ σ(lt) vc ≈Aσ+σ′ σ
′ + σ(β(lt))

(vi, vc) ≈(A)C
(σ, σ′, β) lt

((), ()) ≈unit
(σ, σ′, β) ()

(vil, vcl) ≈τ1
(σ, σ′, β) vtl (vir, vcr) ≈τ2

(σ, σ′, β) vtr

((vil, vir), (vcl, vcr)) ≈τ1×τ2
(σ, σ′, β) (vtl, vtr)

|= n
.= 0 ∧̇ α .= 0

([], []) ≈list[n]α τ
(σ, σ′, β) []

(vi, vc) ≈τ
��

(σ, σ′, β) vt (vsi, vsc) ≈list[n−1]α τ
(σ, σ′, β) vst |= 0 <̇ n

(vi :: vsi, vt :: vst) ≈list[n]α τ
(σ, σ′, β) inl vt :: vst

(vi, vc) ≈τ(σ, σ′, β) vt (vsi, vsc) ≈list[n−1]α−1 τ
(σ, σ′, β) vst |= 0 <̇ n |= 0 <̇ α

(vt :: vst, vc :: vsc) ≈list[n]α τ
(σ, σ′, β) inr vt :: vst

∃I S. ` I :: S ∧ (vi, vc) ≈τ [I/t]
(σ, σ′, β) vt

(pack vi, pack vc) ≈∃t. τ(σ, σ′, β) vt

(vi, vc) ≈τ1
(σ, σ′, β) vt

(inl vi, inl vc) ≈τ1+τ2
(σ, σ′, β) inl vt

∀σ′i w σi σ
′
c w σc β

′ > β vi vc vt. dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi) ∧ dom′(β′) \ dom′(β) ⊆ dom′(σ′c) \ dom′(σc) ⇒
(vi, vc) ≈τ1

(σ′
i
, σ′c, β) vt ⇒

(ei[x 7→ vi, f 7→ fix f(x). ei], ec[x 7→ vc, f 7→ fix f(x). ec]) ∼τ2
(σ′
i
, σ′c, β) et[x 7→ vt, f 7→ fix f(x). et]

(fix f(x). ei, fix f(x). ec) ≈τ1
S(κ)−−−→τ2

(σi, σc, β) fix f(x). et

fix f(x). ei ≈τ1
C(κ)−−−→τ2

σ fix f(x). et fix f(x). ec ≈τ1
C(κ)−−−→τ2

σ+σ′ fix f(x). β(et)

(fix f(x). ei, fix f(x). ec) ≈τ1
C(κ)−−−→τ2

(σ, σ′, β) fix f(x). et

∀I S. ` I :: S ⇒ (ei, ec) ∼τ [I/t]
(σ, σ′, β) et

(Λ. ei,Λ. ec) ≈∀t
S(κ)
:: S. τ

(σ, σ′, β) Λ. et

Λ. ei ≈∀t
C(κ)

:: S. τ
σ Λ. et Λ. ec ≈∀t

C(κ)
:: S. τ

σ′+σ Λ. β(et)

(Λ. ei,Λ. ec) ≈∀t
C(κ)

:: S. τ
(σ, σ′, β) Λ. et

∀σ′i w σi σ
′
c w σc β

′ > β vi vc vt. dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi) ∧ dom′(β′) \ dom′(β) ⊆ dom′(σ′c) \ dom′(σc) ⇒
ei ⇓ vi, j ⇒

∃ vs j′ vt σf D c σ′f β
′ c′. es ⇓ vs, j′ ∧ et, σ

′
i ⇓ vt, σf , D, c ∧ D, σ′c, σf , β  σ′f , β

′, c′ ∧ (vi, vc) ≈τ(σf , σ′f , β′) vt
(ei, ec) ∼τ(σi, σc, β) et

Figure 13: Two-way-similarity relation

The theorem says that given a source expression can be typed in from-scratch mode in our type system
and two substitutions for its free variable that map it to similar values, then its evaluation under the
first substitution and the evaluation of its translation under a store and the second substitution terminate
(statements 1 and 2) and furthermore the evaluation in the target incurs cost that is not greater than the
cost derived by the type system (statement 3). Moreover, the resulting values are similar under the store
that results from the evaluation of the translated expression (statement 4).

The second theorem states the soundness of the translation and the cost derived by the typing derivation
in change propagation mode. Similarly to the previous theorem we will consider expressions with only one
free variable.

Theorem 3 (Type and translation soundness, S mode)
Assume that ·; ·;x : τ ′ `κS e : τ ↪→ peq, (vi, vc) ≈(σi, σc, β) vt, dom(β) ⊆ dom(σi) and dom′(β) ⊆ dom(σc).
Then if [x 7→ vi]e ⇓ v′i, j there exists v′c, v′t, σf , σ′f , Q, β′ j and c, such that (1) [x 7→ vc]e ⇓ v′c, j′ (2)
[x 7→ vt]peq, σi ⇓ v′t, σf , Q, c (3) Q, σc, σf , β  σ′f , β

′, c′ (4) |= c′ ≤̇ κ and (5) (v′i, v′c) ≈(σf , σ′f , β′) v
′
t.

In our second theorem we assume that a source expression can be typed in change propagation mode
and, furthermore, that we are given two substitutions for the source, one that represents the initial values of
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the inputs and the other one the updated, and one substitution for the free variable in the target expression
along with two stores and a bijection between their domains, such that the values that the three substitutions
are assigning to the free variable are two-way-similar under the given stores and the bijection between them.
The theorem states that if the evaluation of the source expression under the first substitution terminates
yielding an initial value, then the evaluation of the expression under the second substitution terminates
yielding a potentially updated value (statement 1), and the evaluation the translated expression in the target
terminates yielding a target value, a final store and a queue holding deferred computations (statement 2).
Furthermore, propagating changes from the updated store using the queue that resulted from the evaluation
yields an updated final store and a final bijection (statement 3) and moreover its cost is no more than the
cost derived by the type system (statement 4). The initial and the updated values obtained by evaluation
in the source language are two-way-similar with the value obtained in the target language under the two
final stores and the bijection (statement 5).

To prove the two theorems above we build two relational Kripke models, one for each mode of the type
system. Our relational models capture enough invariants to allow us to prove the above theorems. The
models are step indexed in order to handle recursive functions.

In the expression relation of our first model we interpret a source type as pairs of source expressions and
target expressions indexed by a possible word, which in this case is a store and a step index. Intuitively,
this interpretation relates a source expression and a target expression that evaluate to similar vales and
furthermore the evaluation of the target expression incurs cost that is less or equal to the cost represented
by the type index. The relational model can be seen in fig. 14. We state and prove the fundamental property
of our relational interpretation.

Theorem 4 (Fundamental property, C mode)
Assume that ∆; Φ; Γ `κC e : τ ↪→ peq, ϕ ∈ DJ∆K, (θs, θt, (σ, m)) ∈ GLϕΓM and |= ϕΦ. Then (θse, θtpeq, (σ, m)) ∈
ELϕτMϕκ.

In the expression relation of our second model we interpret a source type as triples of two source
expressions and a target expression indexed by a possible word, which in this case is two stores, a partial
bijection between their domains, and a step index. Intuitively, in this interpretation two source expressions
and a target expression are related for a given world if whenever the first source expression evaluates in
steps less than the given step index then the three expressions are two-way-similar under every possible
future world and furthermore change propagation does not incur a cost greater than the type index. The
second relational model can be seen in fig. 15. theorem 3 and theorem 4 are corollaries of the fundamental
properties.

Theorem 5 (Fundamental property, S mode)
Assume that ∆; Φ; Γ `κC e : τ ↪→ peq, ϕ ∈ DJ∆K, (θi, θc, θt, (σi, σc, β, m)) ∈ GJϕΓK |= ϕΦ, dom(β) ⊆
dom(σi) and dom′(β) ⊆ dom(σc). Then (θie, θce, θtpeq, (σi, σc, β, m)) ∈ EJϕτKϕκ

Note that both of our models enjoy monotonicity, meaning that if a pair or a triple or expressions are
related in a world, then they are related in all possible future worlds, i.e. all the possible extensions of the
current world. This property is crucial in the proof of the fundamental property.

5 Related Work
Çiçek et al. [5], in their seminal work on CostIt, provided a soundness proof for a preliminary version of the
type system. The soundness proof of the type system in [5] was with respect to an abstract cost model of
change propagation without justification of its realizability. In this work we provide a soundness proof that
shows that the cost derived by the type system is an upper bound of the actual cost that is incurred by our
change propagation mechanism.

Our translation methodology resembles the methodology followed by Chen et al. [4] in their work on
implicit self-adjusting computation. In this work, a functional program with changeability annotations is
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World = Store× Step index
VLτM,VALτM ⊆ Source Value× Target Value×World
ELτMκ ⊆ Source Expression× Target Expression×World

σ w σ′ = ∀ l ∈ dom(σ′). l ∈ dom(σ) ∧ σ(l) = σ′(l)
(σ, j) > (σ′, j′) = σ w σ′ ∧ j < j′

VL(A)µM = VALAM if µ = S or µ = �
VL(A)CM = { (vs, l, (σ, k)) | (vi, σ(l), (σ, k)) ∈ VALAM }
VLunitM = { ((), (), W ) | > }
VLτ1 × τ2M = { ((vs1, vs2), (vt1, vt2), W ) | (vs1, vt1, W ) ∈ VLτ1M ∧ (vs2, vt2, W ) ∈ VLτ2M }
VLlist [n]α τM = { ([], [], σ)k | |= n

.= 0 ∧̇ α .= 0 }
VLlist [n]α τM = { (vs :: vss, inl vt :: vst, W ) | (vs, vt, W ) ∈ VLτ��M ∧

(vss, vst, W ) ∈ VLlist [n− 1]α τM ∧ |= 0 <̇ n }∪
{ (vs :: vss, inr vt :: vst, W ) | (vs, vt, W ) ∈ VLτM ∧

(vss, vst, W ) ∈ VLlist [n− 1]α−1 τM ∧ |= 0 <̇ n ∧̇ 0 <̇ α }
VL∃t. τM = { (pack vs, vt, W ) | ∃I. ` I :: S ∧ (vs, vt, W ) ∈ VLτ [I/t]M }

VALintM = { (n, n, W ) | > }
VALτ1 + τ2M = { (inl vs, inl vt, W ) | (vs, vt, W ) ∈ VLτ1M }∪

{ (inr vs, inr vt, W ) | (vs, vt, W ) ∈ VLτ2M }

VALτ1
S(κ)
−−−→ τ2M = { (fix f(x). es, fix f(x). et, W ) | > }

VALτ1
C(κ)
−−−→ τ2M = { (fix f(x). es, fix f(x). et, W ) |

∀W ′ > W. vt, (vs, vt, W ′) ∈ VLτ1M ⇒
([x 7→ vs, f 7→ fix f(x). es]es, [x 7→ vt, f 7→ fix f(x). et]et, W ′) ∈ ELτ2Mκ }

VAL∀t
S(κ)
:: S. τM = { (Λ. es, Λ. et, W ) | > }

VAL∀t
C(κ)

:: S. τM = { (Λ. es, Λ. et, W ) | ∀I. ` I :: S ⇒ (es, et, W ) ∈ ELτ [I/t]Mκ[I/t] }

ELτMκ = { (es, et, (σ, k)) | ∃vs j. es ⇓ vs, j ∧
j < k ⇒ ∀σ′ w σ.∃ vt σ′′ c .et, σ′′ ⇓ vt, σ′′, ∅, c ∧ |= c ≤̇ κ ∧ (vs, vt, (σ′′, k − j)) ∈ VLτM }

Figure 14: Unary step-indexed interpretation of types

translated to a self-adjusting program. They prove the functional correctness of the derived program and
also that preserves the intentional semantics of the original program, i.e. that change propagation will not
perform worse that the evaluation of the original program. However, the novelty of CostIt lies on the ability
to derive upper bounds on the cost of incremental computation complexity, that is often asymptotically
faster that from-scratch evaluation. The upper bound derived by CostIt is often much more precise than
the execution time of the original program and, consequently, our soundness proof provides a tighter upper
bound on the execution time of the translated program.

Ley-Wild et al. [11] provide a way to reason about the effectiveness of change propagation time by
comparing the edit distance of program traces. They provide a translation scheme from source programs
to self-adjusting target programs. They prove that their translation preserves the semantics of the original
program and also that change propagation between two runs has a cost that is upper bounded by the trace
distance of the two execution traces. The main difference of this work compared to CostIt is that it requires
direct analysis on the cost semantics of programs. In contrast, CostIt provides language support for reasoning
statically about the cost of incremental computation.

6 Improvements and Future Work
Besides the longer term future directions that we mentioned in the beginning, our next step aims in improving
the precision of our cost analysis. More precisely, we plan to modify the cost derived by the type system in
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World = Store× Store× Partial Bijection
VJτK,VAJτK ⊆ Source Value× Source Value× Target Value×World× Step index
EJτKκ ⊆ Source Expression× Source Expression× Target Expression×World× Step index

(σi, σc, β, j) > (σ′i, σ
′
c, β

′, j′) = σi w σ′i ∧ σc w σ′c ∧ dom(β)\dom(β′) ⊆ dom(σi)\dom(σ′i) ∧ dom′(β)\dom′(β′) ⊆ dom(σc)\dom(σ′c) ∧ j < j′

VJ(A)µK = VAJAK if µ = S or µ = �
VJ(A)CK = { (vi, vc, l, (σi, σc, β, k)) | (vi, l, (σi, k)) ∈ VL(A)CM ∧ ∀ k.(vc, β(l), (σc + σi, k)) ∈ VL(A)CM }
VJunitK = { ((), (), (), W ) | > }
VJτ1 × τ2K = { ((vi1, vi2), (vc1, vc2), (vt1, vt2), W ) | (vi1, vc1, vt1, W ) ∈ VJτ1K ∧ (vi2, vc2, vt2, W ) ∈ VJτ2K }
VJlist [n]α τK = { ([], [], [], W ) | |= n

.= 0 ∧̇ α .= 0 }
VJlist [n]α τK = { (vi :: vsi, vc :: vsc, inl vt :: vst, W ) |

(vi, vc, vt, W ) ∈ VJτ��K ∧ (vsi, vsc, vst, W ) ∈ VJlist [n− 1]α τK ∧ |= 0 <̇ n } ∪
{ (vi :: vsi, vc :: vsc, inr vt :: vst, W ) |

(vi, vc, vt, W ) ∈ VJτK ∧ (vsi, vsc, vst, W ) ∈ VJlist [n− 1]α−1 τK ∧ |= 0 <̇ n ∧̇ 0 <̇ α }
VJ∃t. τK = { (pack vi, pack vc, vt, W ) | ∃I. ` I :: S ∧ (vi, vc, vt, W ) ∈ VJτ [I/t]K }

VAJintK = { (n, n, n, W ) | > }
VAJτ1 + τ2K = { (inl vi, inl vc, inl vt, W ) | (vi, vc, vt, W ) ∈ VJτ1K } ∪

{ (inr vi, inr vc, inr vt, W ) | (vi, vc, vt, W ) ∈ VJτ2K }

VAJτ1
S(κ)
−−−→ τ2K = { (fix f(x). ei, fix f(x). ec, fix f(x). et, W ) |

∀ W ′ ≥W. vi, vc, vt, (vi, vc, vt, W ′) ∈ VJτ1K⇒
([x 7→ vi, f 7→ fix f(x). ei]ei, [x 7→ vc, f 7→ fix f(x). ec]ec, [x 7→ vt, f 7→ fix f(x). et]et, W ′) ∈ EJτ2Kκ }

VAJτ1
C(κ)
−−−→ τ2K = { (fix f(x). ei, fix f(x). ec, fix f(x). et, (σi, σc, β, k)) | (fix f(x). ei, fix f(x). et, (σi, k)) ∈ VALτ1

C(κ)
−−−→ τ2M ∧

∀k. (fix f(x). ec, fix f(x). β(et), (σc + σi, k)) ∈ VALτ1
C(κ)
−−−→ τ2M }

VAJ∀t
S(κ)
:: S. τK = { (Λ. ei, Λ. ec, Λ. et, W ) | ∀I. ` I :: S ⇒ (ei, ec, et, W ) ∈ EJτ [I/t]Kκ[I/t] }

VAJ∀t
C(κ)

:: S. τK = { (Λ. ei, Λ. ec, Λ. et, (σi, σc, β, k)) | (Λ. ei, Λ. et, (σi, k)) ∈ VAL∀t
C(κ)

:: S. τM ∧

∀k. (Λ. ec, Λ. β(et), (σc + σi, k)) ∈ VALτ1
C(κ)
−−−→ τ2M }

ELτMκ = { (ei, ec, et, W ) | ∀ji σi σc β vi. (σi, σc, β, ji) ≥W ∧ ei ⇓ vi, ji ⇒
∃vc jc vt σf D c σ′f βf c

′. ec ⇓ vc, jc ∧
et, σi ⇓ vt, σf , Q, jc ∧ Q, σc, σf , β  σ′f , β

′, c′ ∧
(σf , σ′f , β

′) ≥ (σi, σc, β) ∧ |= c ≤̇ κ ∧ (vi, vc, vt, (σf , σ′f , β
′, k − ji)) ∈ VJτK }

Figure 15: Step-indexed interpretation of types

order to account for the cost incurred by queue operations and locations update during change propagation.
Currently, the type system tracks only the cost of pure computation during change propagation, i.e. the cost
of evaluating the recorded closures. We anticipate that there is no serious difficultly in this direction.

Another possible direction, which we did not consider during this internship due to time constraints,
would be the mechanization of CostIt’s metatheory in a proof assistant. We believe that, with sufficient
automation, the cumbersomeness of our handwritten proofs could be significantly reduced.
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Appendix A Definitions

‖int‖A = int
‖τ1 + τ2‖A = ‖τ1‖+ ‖τ2‖
‖τ1

µ(κ)−−−→ τ2‖A = ‖τ1‖ −→ ‖τ2‖

‖∀i
µ(κ)
:: S. τ‖A = unit −→ ‖τ‖

‖(A)C‖ = ref ‖A‖A
‖(A)S‖ = ‖A‖A
‖(A)�‖ = ‖A‖A
‖unit‖ = unit
‖τ1 × τ2‖ = ‖τ1‖ × ‖τ2‖
‖list [n]α τ‖ = list ‖τ‖+ ‖τ��‖
‖∃i. τ‖ = ‖τ‖
‖C → τ‖ = ‖τ‖
‖C ∧ τ‖ = ‖τ‖

Figure 16: Translation of types

map f e = caseL e of
| [] → []
| h :: tl → f h :: map f tl

Figure 17: Mapping function in the target language

foldr f e a = caseL e of
| [] → a
| h :: tl → let a′ = foldr f tl a in f h a′

Figure 18: Folding function in the target language

Definition 1 (Index term interpretation)
Let ϕ ∈ DJ∆K and ∆; Φ ` i : S. The index term i is interpreted as follows
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deepaux(e, acc, (A)C) = let l = ref !e in (l, cons l acc)
deepaux(e, acc, τ1 × τ2) = let v = e in

let p1 = deepaux(fst v, acc, τ1) in
let acc′ = snd p1 in
let p2 = deepaux(snd v, acc′, τ2) in
((fst p1, fst p2), snd p2)

deepaux(e, acc, unit) = acc
deepaux(e, acc, ∃i. τ) = deepaux(e, acc, τ)
deepaux(e, acc, C → τ) = deepaux(e, acc, τ)
deepaux(e, acc, C ∧ τ) = deepaux(e, acc, τ)
deepaux(e, acc, list [n]α τ) = foldr

(λh. λa. case(h, hl.⊥, hr.let p = deepaux(hr, τ, a) in (cons (inr (fst p)) (fst acc), snd p)))
e ([], acc)

deep(e, τ) = deepaux(e, [], τ)

Figure 19: Deep dereferencing, re-referencing and flattening of the locations that occur in an expression
with expression reconstruction

costdeep((A)C) = 3
costdeep(τ1 × τ2) = costdeep(τ1) +̂ costdeep(τ2) +̂ 10
costdeep(unit) = 0
costdeep(∃i. τ) = costdeep(τ)
costdeep(C → τ) = costdeep(τ)
costdeep(C ∧ τ) = costdeep(τ)
costdeep(list [n]α τ) = n ·̂ (costdeep(τ) +̂ 10)

Figure 20: The cost associated with deep(·, ·)

deep′aux(e, acc, (A)C) = let l = ref !e in cons l acc
deep′aux(e, acc, τ1 × τ2) = let v = e in

let acc′ = deep′aux(fst v, acc, τ1) in
deep′aux(snd v, acc′, τ2)

deep′aux(e, acc, unit) = acc

deep′aux(e, acc, ∃i. τ) = deep′aux(e, acc, τ)
deep′aux(e, acc, C → τ) = deep′aux(e, acc, τ)
deep′aux(e, acc, C ∧ τ) = deep′aux(e, acc, τ)
deep′aux(e, acc, list [n]α τ) = foldr (λh. λa. case(h, hl.⊥, hr.inr deep′aux(hr, τ, a))) e acc

deep′(e, τ) = deep′aux(e, [], τ)

Figure 21: Deep dereferencing, re-referencing and flattening of the locations that occur in an expression
without expression reconstruction
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costdeepref((A)C) = 3
costdeepref(τ1 × τ2) = costdeep(τ1) +̂ costdeep(τ2) +̂ 4
costdeepref(unit) = 0
costdeepref(∃i. τ) = costdeepref(τ)
costdeepref(C → τ) = costdeepref(τ)
costdeepref(C ∧ τ) = costdeepref(τ)
costdeepref(list [n]α τ) = n ·̂ (costdeepref(τ) +̂ 6)

Figure 22: The cost associated with deep′(·, ·)

conv(e, (A)µ, (A)µ) = e
conv(e, (A)µ, (A)C) = let v = e in ref v
conv(e, (A)C, (A)µ) = !e if (µ = S) ∨ (µ = �)
conv(e, τ1 × τ2, τ

′
1 × τ ′2) = (conv(fst e, τ1, τ

′
1), conv(snd e, τ2, τ

′
2))

conv(e, unit, unit) = e
conv(e, ∃i. τ, ∃i. τ ′) = conv(e, τ, τ ′)
conv(e, C → τ, C → τ ′) = conv(e, τ, τ ′)
conv(e, C ∧ τ, C ∧ τ ′) = conv(e, τ, τ ′)
conv(e, list [n]α τ, list [n]α τ ′) = map (λh. case(h, hl.conv(hl, τ��, τ ′��), hr.conv(hr, τ, τ ′))) e

Figure 23: Conversion an expression of type τ to a type τ ′ when the two types have the same structure
same structure

costconv((A)µ, (A)µ) = 0
costconv((A)µ, (A)C) = 2
costconv((A)C, (A)µ) = 1

if (µ = S) ∨ (µ = �)
costconv(τ1 × τ2, τ

′
1 × τ ′2) = 2 +̂ costconv(τ1, τ

′
1) +̂ costconv(τ2, τ

′
2)

costconv(unit, unit) = 0
costconv(∃i. τ,∃i. τ ′) = costconv(τ, τ ′)
costconv(C → τ, C → τ ′) = costconv(τ, τ ′)
costconv(C ∧ τ, C ∧ τ ′) = costconv(τ, τ ′)
costconv(list [n]α τ, list [n]α τ ′) = α ·̂ costconv(τ��, τ ′��) +̂ (n −̂ α) ·̂ costconv(τ, τ ′)

Figure 24: The cost associated with conv(·, ·, ·)
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∆; ΦA `κε A1 v A2 ↪→ g A1 is a subtype of A2 and g is the coercion metafunction

∆; ΦA `κε τ1 v τ2 ↪→ g τ1 is a subtype of τ2 and g is the coercion metafunction

The rules marked with (†) are also valid for the A ` judgment.

∆; Φ `0
ε (int)S v (int)� ↪→ λe.e ∆; Φ `0

ε (int)� v (int)S ↪→ λe.e

∆; Φ `κ1
δ τ ′1 v τ1 ↪→ g1 ∆; Φ `κ2

δ τ2 v τ ′2 ↪→ g2 ∆; Φ |= κ +̂ κ1 +̂ κ2 +̂ (δ = C) ? 1 : 0 ≤ κ′

∆; ΦA `0
ε τ1

δ(κ)−−−→ τ2 v τ ′1
δ(κ′)−−−→ τ ′2 ↪→ λe.fix f(x).g2(e g1(x))

→ 2

∆t :: S; Φ `κ1
ε τ v τ ′ ↪→ g ∆; Φ |= κ +̂ κ1 +̂ ((δ = C) ? 1 : 0) ≤ κ′

∆; Φ `0
ε ∀t

δ(κ)
:: S. τ v ∀t

δ(κ′)
:: S. τ ′ ↪→ λe.λx.g(e ())

∀2

∆; Φ `κ1
ε τ1 v τ ′1 ↪→ g1 ∆; Φ `κ2

ε τ2 v τ ′2 ↪→ g2 ∆; Φ |= κ
.= κ1 +̂ κ2

∆; Φ `κε τ1 × τ2 v τ ′1 × τ ′2 ↪→ λe.(g1(fst e),g2(snd e))
×

∆; Φ |= κ
.= (ε = C) ? 1 +̂ ˆmax(costconv(τ1, τ

��
1 ), costconv(τ2, τ

��
2 )) : 0

∆; Φ `κε (τ1 + τ2)� v (τ��
1 + τ��

2 )� ↪→ λe.case(e, x.inl conv(x, τ1, τ
��
1 ), y.inr conv(y, τ2, τ

��
2 ))

+1

∆; Φ |= κ
.= (ε = C) ? 1 +̂ ˆmax(costconv(τ��

1 , τ1), costconv(τ��
2 , τ2)) : 0

∆; Φ `κε (τ��
1 + τ��

2 )� v (τ1 + τ2)� ↪→ λe.case(e, x.conv(x, τ��
1 , τ1), y.conv(y, τ��

2 , τ2))
+2

∆; Φ |= κ +̂ costconv(τ��
1 , τ1) +̂ (δ = C) ? (1 +̂ costconv(τ2, τ

��
2 )) : 0 ≤̇ κ′

∆; Φ `0
ε (τ1

δ(κ)−−−→ τ2)� v (τ��
1

δ(κ′)−−−→ τ��
2 )� ↪→ λe.λx. conv(e conv(x, τ��

1 , τ1), τ2, τ
��
2 )

→ 1

∆; Φ |= κ +̂ (δ = C) ? 1 +̂ costconv(τ��, τ) : 0 ≤̇ κ′

∆; Φ `0
ε (∀t

δ(κ)
:: S. τ)� v (∀t

δ(κ′)
:: S. (τ��))� ↪→ λe.fix f(x). conv(e (), τ, τ��)

∀1

∆; Φ |= α
.= 0

∆; Φ `0
ε list [n]α τ v list [n]α τ�� ↪→ λe.e

l1

∆; Φ |= n
.= n′ ∆; Φ |= α

.= α′ ∆; Φ `κ
′

S τ v τ ′ ↪→ g ∆; Φ |= κ
.= α ·̂ κ′

∆; Φ `κS list [n]α τ v list [n′]α
′

τ ′ ↪→ λe.map λz. case(z, x.inl conv(drop(g(conv(x, τ��, τ))), τ ′, τ ′��), y.inr g y) e
l2-S

∆; Φ |= n
.= n′ ∆; Φ |= α

.= α′

∆; Φ `κ
′

C τ v τ ′ ↪→ g ∆; Φ |= κ
.= (n ·̂ κ′ +̂ (n −̂ α) ·̂ (costconv(τ��, τ) +̂ costconv(τ ′, τ ′��) +̂ 1))

∆; Φ `κC list [n]α τ v list [n′]α
′

τ ′ ↪→ λe.map λz. case(z, x.inl conv(g(conv(x, τ��, τ)), τ ′, τ ′��), y.inr g y) e
l2-C

∆, t :: S; Φ `κε τ v τ ′ ↪→ g t 6∈ FV (Φ)
∆; Φ `κε ∃t. τ v ∃t. τ ′ ↪→ g

∃
∆; Φ |= µ ≤ µ′ ∆; Φ |= κ

.= costconv((A)µ, (A)µ
′
)

∆; Φ `κε (A)µ v (A)µ
′
↪→ λe.conv(e, (A)µ, (A)µ

′
)

µ

∆; ΦA `κε A v A′ ↪→ g µ = S ∨ µ = �
∆; Φ `κε (A)µ v (A′)µ ↪→ g

C1

∆; ΦA `κ
′

S A v A′ ↪→ g ∆; Φ |= κ
.= κ′ +̂ 2

∆; Φ `κS (A)C v (A′)C ↪→ λe.let l = ref g(!e) in let () = push([l], λ(). ref g(!e)) in l
C2-S

∆; ΦA `κ
′

C A v A′ ↪→ g ∆; Φ |= κ
.= κ′ +̂ 2

∆; Φ `κC (A)C v (A′)C ↪→ λe.ref g(!e)
C2-C

∆; Φ `0
ε τ v τ ↪→ λe.e

refl*(†)

∆; Φ `κ1
ε τ1 v τ2 ↪→ g1 ∆; Φ `κ2

ε τ2 v τ3 ↪→ g2 ∆; Φ |= κ
.= κ1 +̂ κ2

∆; Φ `κε τ1 v τ3 ↪→ λe.g2(g1(e))
tran

∆; Φ ∧ C `κ1
ε η ↪→ g1 ∆; Φ ∧ ¬̇C `κ2

ε η ↪→ g2

∆; Φ `0
ε η ↪→ λe.⊥

split(†)
∆; Φ ∧ C ′ |= C ∆; Φ `κε τ v τ ′ ↪→ g

∆; Φ `κε C → τ v C ′ → τ ′ ↪→ g
c-imp

∆; Φ ∧ C |= C ′ ∆; Φ `κε τ v τ ′ ↪→ g
∆; Φ `κε C ∧ τ v C ′ ∧ τ ′ ↪→ g

c-and

Figure 25: Coercion meta-function
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∆; Φ; Γ `κε e : τ ↪→ peq

∆; Φ ` Γ wf

∆; Φ; Γ, x : τ `0
ε x : τ ↪→ x

var
∆; Φ ` Γ wf

∆; Φ; Γ `0
ε n : (int)� ↪→ n

int

∆; Φ; Γ `κ1
ε e1 : τ1 ↪→ pe1q ∆; Φ; Γ `κ2

ε e1 : τ2 ↪→ pe2q ∆; Φ |= κ
.= κ1 +̂ κ2

∆; Φ; Γ `κε (e1, e2) : τ1 × τ2 ↪→ (pe1q, pe2q)
pair

∆; Φ; Γ `κε e : τ1 ↪→ peq
∆; Φ; Γ `κε inl e : (τ1 + τ2)S ↪→ inl peq

inl
∆; Φ; Γ `κε e : τ2 ↪→ peq

∆; Φ; Γ `κε inr e : (τ1 + τ2)S ↪→ inr peq
inr

∆; Φ; Γ `κ
′

ε e : τ1 × τ2 ↪→ peq ∆; Φ |= κ
.= (κ′ +̂ ε = C ? 1 : 0)

∆; Φ; Γ `κε fst e : τ1 ↪→ fst peq
fst

∆; Φ; Γ `κ
′

ε e : τ1 × τ2 ↪→ peq ∆; Φ |= κ
.= (κ′ +̂ ε = C ? 1 : 0)

∆; Φ; Γ `κε snd e : τ2 ↪→ fst peq
snd

∆; Φ; Γ, f : (τ1
δ(κ)−−−→ τ2)S, x : τ1 `κδ e : τ2 ↪→ peq

∆; Φ; Γ `0
ε fix f(x). e : (τ1

δ(κ)−−−→ τ2)S ↪→ fix f(x). peq
fix1

∆; Φ; Γ `κ1
S e1 : (τ1

S(κ′)−−−→ τ2)µ ↪→ pe1q ∆; Φ; Γ `κ2
S e2 : τ1 ↪→ pe2q µ ≤ S ∆; Φ |= κ

.= κ′ +̂ κ1 +̂ κ2

∆; Φ; Γ `κS e1 e2 : τ2 ↪→ pe1q pe2q
app1

∆; Φ; Γ `κ1
S e1 : (τ1

C(κ′)−−−→ τ2)C ↪→ pe1q
∆; Φ; Γ `κ2

S e2 : τ1 ↪→ pe2q C E τ2 ∆; Φ |= κ
.= κ′ +̂ κ1 +̂ κ2 +̂ costdeepref(τ2) +̂ 3

∆; Φ; Γ `κS e1 e2 : τ2 ↪→
let l = pe1q in let x = pe2q in let r = deep(!l x, τ2) in
let () = push(snd r, λ().deep′(!l x, τ2)) in fst r

app2

∆; Φ; Γ `κ1
S e1 : (τ1

C(κ′)−−−→ τ2)µ ↪→ pe1q
∆; Φ; Γ `κ2

S e2 : τ1 ↪→ pe2q C E τ2 µ ≤ S ∆; Φ |= κ
.= κ′ +̂ κ1 +̂ κ2 +̂ costdeepref(τ2) +̂ 2

∆; Φ; Γ `κS e1 e2 : τ2 ↪→
let f = pe1q in let x = pe2q in let r = deep(f x, τ2) in
let () = push(snd r, λ().deep′(f x, τ2)) in fst r

app3

∆; Φ; Γ `κ1
C e1 : (τ1

C(κ′)−−−→ τ2)µ ↪→ pe1q
∆; Φ; Γ `κ2

C e2 : τ1 ↪→ pe2q C E τ2 ∆; Φ |= κ
.= κ′ +̂ κ1 +̂ kappa2 +̂ 2

∆; Φ; Γ `κC e1 e2 : τ2 ↪→ !pe1q pe2q
app4

∆; Φ; Γ `κ1
C e1 : (τ1

C(κ′)−−−→ τ2)S ↪→ pe1q ∆; Φ; Γ `κ2
C e2 : τ1 ↪→ pe2q C E τ2 ∆; Φ |= κ

.= κ′ +̂ κ1 +̂ κ2 +̂ 1
∆; Φ; Γ `κC e1 e2 : τ2 ↪→ pe1q pe2q

app5

∆; Φ; Γ `κeε e : (τ1 + τ2)µ ↪→ peq ∆; Φ; Γ, x : τ1 `κ
′

ε e1 : τ ↪→ pe1q
∆; Φ; Γ, y : τ2 `κ

′

ε e2 : τ ↪→ pe2q µ ≤ S ∆; Φ |= κ
.= κe +̂ κ′ +̂ ((ε = C) ? 1 : 0)

∆; Φ; Γ `κε case(e, x.e1, y.e2) : τ ↪→ case(peq, x.pe1q, y.pe2q)
case1

∆; Φ; Γ `κeS e : (τ1 + τ2)C ↪→ peq ∆; Φ; Γ, x : τ1 `κ
′

C e1 : τ ↪→ pe1q
∆; Φ; Γ, y : τ2 `κ

′

C e2 : τ ↪→ pe2q C E τ ∆; Φ |= κ
.= κe +̂ κ′ +̂ costdeepref(τ) +̂ 3

∆; Φ; Γ `κS case(e, x.e1, y.e2) : τ ↪→
let l = peq in let r = deep(case(!l, x.pe1q, y.pe2q), τ) in
let () = push(snd r, λ().deep′(case(!l, x.pe1q, y.pe2q), τ)) in
fst r

case2

Figure 26: Translation rules
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∆; Φ; Γ `κε e : τ expression e has type τ with dynamic stability κ. The context Υ carrying types of

primitive functions is omitted from all rules.

∆; Φ; Γ `κeε e : (τ1 + τ2)C ↪→ peq
∆; Φ; Γ, x : τ1 `κ

′

C e1 : τ ↪→ pe1q ∆; Φ; Γ, y : τ2 `κ
′

C e2 : τ ↪→ pe2q µ E τ ∆; Φ |= κ
.= κe +̂ κ′ +̂ 2

∆; Φ; Γ `κC case(e, x.e1, y.e2) : τ ↪→ case(!peq, x.pe1q, y.pe2q)
case3

Υ(ζ) = ζ : (T1, . . . , Tn) κ′−→ T

∆; Φ; Γ `κeiε ei : (Ti)µi ↪→ peiq µ1 t · · · t µn = S ∆; Φ |= κ
.= (

n∑
1
κei) +̂ (ε .= C ? κ′ +̂ 1 : 0)

∆; Φ; Γ `κε ζ(e1, . . . , en) : (T )µ1t···tµn ↪→ ζ(pe1q, . . . , penq)
primApp1

Υ(ζ) = ζ : (T1, . . . , Tn) κ′−→ T ∆; Φ; Γ `κeiS ei : (Ti)µi ↪→ peiq

µ1 t · · · t µn = C ∆; Φ |= κ
.= (

n∑
1
κei) +̂ κ′ +̂ 2 x′i = if (µi = C) then !xi else xi

∆; Φ; Γ `κS ζ(e1, . . . , en) : (T )µ1t···tµn ↪→
let xi = peiq in
let l = ref (ζ(x′1, . . . , x′n)) in
let () = push([l], λ(). ref (ζ(x′1, . . . , x′n))) in l

primApp2

Υ(ζ) = ζ : (T1, . . . , Tn) κ′−→ T ∆; Φ; Γ `κeiC ei : (Ti)µi ↪→ peiq

µ1 t · · · t µn = C ∆; Φ |= κ
.= (

n∑
1
κei) +̂ κ′ +̂ 1 pe′iq = if (µi = C) then !peiq else peiq

∆; Φ; Γ `κC ζ(e1, . . . , en) : (T )µ1t···tµn ↪→ ζ(pe′1q, . . . , pe′nq)
primApp3

∆, t :: S; Φ; Γ `κδ e : τ ↪→ peq

∆; Φ; Γ `0
ε Λ. e : ∀t

δ(κ)
:: S. τ ↪→ λ(). peq

∀I

∆; Φ; Γ `κeS e : (∀t
S(κ′)

:: S. τ)S ↪→ peq ∆ ` I :: S ∆; Φ |= κ
.= κe +̂ κ′{I/t}

∆; Φ; Γ `κS e[] : τ{I/t} ↪→ peq ()
∀E1

∆; Φ; Γ `κeS e : (∀t
C(κ′)

:: S. τ)C ↪→ peq
∆ ` I :: S C E τ{I/t} ∆; Φ |= κ

.= κe +̂ κ′{I/t} +̂ costdeepref(τ) +̂ 3

∆; Φ; Γ `κS e[] : τ{I/t} ↪→ let l = peq in let r = deep(!l (), τ{I/t}) in
let () = push(snd r, λ().deep′(!l (), τ{I/t})) in fst r

∀E2

∆; Φ; Γ `κeS e : (∀t
C(κ′)

:: S. τ)S ↪→ peq
∆ ` I :: S C E τ{I/t} ∆; Φ |= κ

.= κe +̂ κ′{I/t} +̂ costdeepref(τ) +̂ 2

∆; Φ; Γ `κS e[] : τ{I/t} ↪→ let f = peq in let r = deep(f (), τ{I/t}) in
let () = push(snd r, λ().deep′(f (), τ{I/t})) in fst r

∀E3

∆; Φ; Γ `κeC e : (∀t
C(κ′)

:: S. τ)C ↪→ peq ∆ ` I :: S C E τ{I/t} ∆; Φ |= κ
.= κe +̂ κ′{I/t} +̂ 2

∆; Φ; Γ `κC e[] : τ{I/t} ↪→ !peq ()
∀E4

∆; Φ; Γ `κeC e : (∀t
C(κ′)

:: S. τ)S ↪→ peq ∆ ` I :: S C E τ{I/t} ∆; Φ |= κ
.= κe +̂ κ′{I/t} +̂ 1

∆; Φ; Γ `κC e[] : τ{I/t} ↪→ peq ()
∀E5

∆; Φ; Γ `κε e : τ{I/t} ↪→ peq ∆ ` I :: S
∆; Φ; Γ `κε pack e : ∃t. τ ↪→ peq

∃I

∆; Φ; Γ `κeε e : ∃t. τ ↪→ peq
∆, t :: S; Φ; Γ, x : τ `κ

′

ε e′ : τ ′ ↪→ pe′q t 6∈ FV (Φ; Γ, τ ′) ∆; Φ |= κ
.= κe +̂ κ′ +̂ ((ε = C) ? 1 : 0)

∆; Φ; Γ `κε unpack e as x in e′ : τ ′ ↪→ let x = peq in pe′q
∃E

Figure 27: Translation rules, part 2
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∆; Φ; Γ `κε e : τ ↪→ peq

∆; Φ; Γ `κ1
ε e : τ ′ ↪→ peq ∆; Φ `κ2

ε τ ′ v τ ↪→ g ∆; Φ |= κ1 +̂ κ2 ≤̇ κ

∆; Φ; Γ `κε e : τ ↪→ g(peq)
v

∆; Φ; Γ `κ
′

ε e : τ ↪→ peq ∀x ∈ Γ ∆; Φ ` Γ(x) v Γ(x)�� ∆; Φ |= κ
.= (ε = S ? 0 : κ′)

∆; Φ; Γ,Γ′ `κε e : τ�� ↪→ drop(conv(peq, τ, τ��))
nochange

∆; Φ; Γ, f : (τ1
δ(κ)−−−→ τ2)�, x : τ1 `κδ e : τ2 ↪→ peq ∀x ∈ Γ ∆; Φ |= Γ(x) v Γ(x)��

∆; Φ; Γ,Γ′ `0
ε fix f(x). e : (τ1

δ(κ)−−−→ τ2)� ↪→ fix f(x). peq
fix2

∆; Φ; Γ `κ1
ε e1 : τ1 ↪→ pe1q ∆; Φ; Γ, x : τ1 `κ2

ε e2 : τ2 ↪→ pe2q ∆; Φ |= κ
.= κ1 + κ2 + (ε = C ? 1 : 0)

∆; Φ; Γ `κε let x = e1 in e2 : τ2 ↪→ let x = pe1q in pe2q
let

∆; Φ ` Γ wf

∆; Φ; Γ `0
ε () : unit ↪→ ()

unit
∆; Φ ∧ C; Γ `κε e : τ ↪→ peq
∆; Φ; Γ `κε e : C → τ ↪→ peq

c-impI

∆; Φ; Γ `κε e : C → τ ↪→ peq ∆; Φ |= C

∆; Φ; Γ `κε e : τ ↪→ peq
c-impE

∆; Φ; Γ `κε e : τ ↪→ peq ∆; Φ |= C

∆; Φ; Γ `κε e : C ∧ τ ↪→ peq
c-andI

∆; Φ; Γ `κε e1 : C ∧ τ1 ↪→ pe1q ∆; Φ ∧ C; Γ, x : τ1 `κε e2 : τ2 ↪→ pe2q

∆; Φ; Γ `κε let x = e1 in e2 : τ2 ↪→ let x = pe1q in pe2q
c-andE

∆; Φ |= ⊥ ∆; Φ ` Γ wf
∆; Φ; Γ `κε e : τ ↪→ ⊥

contra
∆; Φ ` Γ wf

∆; Φ; Γ `0
ε [] : list [0]0 τ ↪→ []

nil

∆; Φ; Γ `κ1
ε e1 : τ�� ↪→ pe1q ∆; Φ; Γ `κ2

ε e2 : list [n]α τ ↪→ pe2q ∆; Φ |= κ
.= κ1 +̂ κ2

∆; Φ; Γ `κε e1 :: e2 : list
[
n +̂ 1

]α
τ ↪→ inl pe1q :: pe2q

cons1

∆; Φ; Γ `κ1
ε e1 : τ ↪→ pe1q ∆; Φ; Γ `κ2

ε e2 : list [n]α−1
τ ↪→ pe2q ∆; Φ |= α >̇ 0 ∆; Φ |= κ

.= κ1 +̂ κ2

∆; Φ; Γ `κε e1 :: e2 : list
[
n +̂ 1

]α
τ ↪→ inr pe1q :: pe2q

cons2

∆; Φ; Γ `κeε e : list [n]α τ ↪→ peq
∆; Φ ∧ n .= 0; Γ `κ

′

ε e1 : τ ′ ↪→ pe1q ∆, i :: ι; Φ ∧ n .= i+ 1; Γ, h : τ��, tl : list [i]α τ `κ
′

ε e2 : τ ′ ↪→ pe2ql
∆, i :: ι, β :: ι; Φ ∧ n .= i+ 1 ∧ α .= β + 1; Γ, h : τ, tl : list [i]β τ `κ

′

ε e2 : τ ′ ↪→ pe2qr
∆; Φ |= κ

.= κe +̂ κ′ +̂ (ε = C) ? 1 : 0

∆; Φ; Γ `κε caseL e of nil → e1 | cons(h, tl) → e2 : τ ′ ↪→
caseL peq of
| nil → pe1q
| cons(s, tl) → case(s, h.pe2ql, h.pe2qr)

caseL

Figure 28: Translation rules, part 3
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JnKϕ = n
JxKϕ = ϕx
J0Kϕ = 0
JI +̂ 1Kϕ = JIKϕ + 1
JI1 +̂ I2Kϕ = JI1Kϕ + JI2Kϕ
JI1 −̂ I2Kϕ = JI1Kϕ − JI2Kϕ
JI1 ·̂ I2Kϕ = JI1Kϕ · JI2Kϕ
J Î1
I2

Kϕ = JI1Kϕ
JI2Kϕ

JII2
1 Kϕ = JI1K

JI2Kϕ
ϕ

J ˆdIeKϕ = dJIKϕe
J ˆbIcKϕ = bJIKϕc
J ˆlog2(I)Kϕ = log2(JIKϕ)
J ˆmin(I1, I2)Kϕ = minJI1KϕJI2Kϕ
J ˆmax(I1, I2)Kϕ = maxJI1KϕJI2Kϕ
J
∑̂In
i=I1IKϕ =

∑JI2Kϕ
i=JI1KϕJIKϕ\i

Definition 2 (Constraint interpretation)
Let ϕ ∈ DJ∆K and ∆; Φ ` C wf. The constraint C is interpreted as follows

JI1
.= I2Kϕ = JI1Kϕ = JI2Kϕ

JI1 <̇ I2Kϕ = JI1Kϕ < JI2Kϕ
J¬̇IKϕ = ¬JIKϕ
J⊥̇Kϕ = ⊥
J>̇Kϕ = >
JC1 ∧̇ C2Kϕ = JC1Kϕ ∧ JC2Kϕ
JC1 ∨̇ C2Kϕ = JC1Kϕ ∨ JC2Kϕ

Lemma 6 (Index term interpretation soundness)
Let ϕ ∈ DJ∆K and ∆; Φ ` i : S. Then

• S = Ṅ iff JiKϕ ∈ N

• S = Ṙ+ iff JiKϕ ∈ R+

Proof. The result follows easily by induction on the sorting derivation.

Definition 3 (Constraint satisfaction)
Let ∆; Φ ` C wf. Then ∆; Φ |= C iff for all ϕ ∈ DJ∆K, if JΦKϕ holds then JCKϕ holds.

Appendix B Proofs
Lemma 7 (Evaluation invariants)
If

e, σ ⇓L v, σ′, D, j

then the following hold:

1. σ′ wL σ

Proof. By induction on the evaluation derivation.
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Lemma 8 (Evaluation is deterministic)
If

e, σi ⇓L v, σf , ∅, j

and
e, σi ⇓L v′, σ′f , ∅, j′

then j = j′, v′ = v and σ′f = σf

Proof. By induction on the evaluation derivation.

Lemma 9 (Graph locations)
If e, σi ⇓L v, σf , D, j and locs(e) = ∅ and cl(σ) then locs(D) ⊆ σf \ σi

Proof. By induction on the evaluation derivation.

Lemma 10 (Change propagation invariants)
If

D, σc, σf , β  σ′f , β
′, c

then the following hold:

1. σ′f wL2 σc

2. dom(β′) ≥ dom(β)

Proof. The result follows by induction on the length of the queue.

Lemma 11 (Change propagation under store extension)
If

D, σc, σf , β  σ′f , β
′, c

and then for all σ′′f wL1 σf
D, σc, σ

′′
f , β  σ′f , β

′, c

Proof. The result follows by induction on the length of the queue.

Lemma 12 (Change propagation under bijection extension)
If

D, σc, σf , β  σ′f , β
′, c

then for all βj such that β ⊗ βj and β′ ⊗ βj are defined, and locs(D) ∩ dom(βj) = ∅ then

D, σc, σ
′′
f , β ⊗ βj  σ′f , β

′ ⊗ βj , c

Proof. The result follows by induction on the length of the queue.

Lemma 13 (Change propagation composition)
If

D1, σc, σf , β  σ′f , β
′, c1

and
D2, σ

′
f , σf , β

′  σ′′f , β
′′, c2

then
D1 +D2, σc, σf , β  σ′′f , β

′′, c1 + c2

Proof. The result follows by induction on the length of the first queue.
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Lemma 14 (No free locations)
Assume that

∆; Φ; Γ `κε e : τ ↪→ peq

Then locs(peq) = ∅ .

Proof. By induction on the derivation.

Lemma 15 (World extension closure)
The following hold:

1. If (vs, vt, W ) ∈ VLτML and W ′ ≥W , then (vs, vt, W ′) ∈ VLτML.

2. If (vi, vc, vt, W ) ∈ VJτK and W ′ ≥W , then (vi, vc, vt, W ′) ∈ VJτK.

3. If (es, et, W ) ∈ ELτMκL and W ′ ≥W , then (es, et, W ′) ∈ ELτMκL.

4. If (ei, ec, et, W ) ∈ EJτKκ and W ′ ≥W , then (ei, ec, et, W ′) ∈ EJτKκ.

5. If (θs, θt, W ) ∈ GLΓML and W ′ ≥W , then (θs, θt, W ′) ∈ GLΓML.

6. If (θi, θc, θt, W ) ∈ GJΓK and W ′ ≥W , then (θi, θc, θt, W ′) ∈ GJΓK.

Proof. First we prove statements (1) and (3) simultaneously, by induction on the type. Then we prove
statement (5) by induction on the length of the environment, using statement (1).

Using the statement (1), we can prove statements (2) and (4) simultaneously, by induction on the type.
Then we prove statement (6) by induction on the length of the environment, using statement (2).

Lemma 16 (Value relation projection)
Then the following hold:

1. If (vi, vc, vt, (σi, σc, β, j)) ∈ VJτK then (vi, vt, (σi, j)) ∈ VLτML1 and ∀m, (vc, vt, (σc, m)) ∈ VLτML2

2. If (θi, θc, θt, (σi, σc, β, m)) ∈ GJΓK then (θi, θt, (σi, j)) ∈ GLΓML1 and ∀m, (θc, θt, (σc, m)) ∈ GLΓML2

Proof. (1) follows by induction on the type τ . (2) follows by induction in the size of Γ and using (1).

Lemma 17 (Value relation composition)
Then the following hold:

1. If (vi, vt, (σi, j)) ∈ VLτML1 , ∀m, (vc, vt, (σc, m)) ∈ VLτML2 and C E τ then (θi, θc, θt, (σi, σc, β, m)) ∈
GJΓK

2. If (θi, θt, (σi, j)) ∈ GLΓML1 , ∀m, (θc, θt, (σc, m)) ∈ GLΓML2 and C E τ then (θi, θc, θt, (σi, σc, β, m)) ∈
GJΓK

Proof. (1) follows by induction on the type τ . (2) follows by induction in the size of Γ and using (1).

Lemma 18
Assume that:

∀ m, (ei, et, (σ, m)) ∈ ELτMκL (A)

Then, there exist vi, j, vt, σ′:

1. ei ⇓ vi, j

2. ec, σ ⇓L vt, σ′, ∅, c

3. c ≤ κ
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4. ∀ m, (vi, vt, (σ′, m)) ∈ VLτML

Proof. We instantiate eq. (A) with step index 1 and obtain vi, j such that

ei ⇓ vi, j

We can now instantiate eq. (A) with step index j + 1 and by using the fact that the evaluation relation is
deterministic in the source and j < j + 1 we can obtain vt, σf and c such that

ec, σ ⇓L vt, σf , ∅, c

and
c ≤ κ

To show the third goal we pick an arbitrary m and we instantiate eq. (A) with m + j + 1. Using the fact
that the evaluation relation is deterministic in the source and j < m+ j + 1 we can obtain v′t and σ′′ such
that

ec, σ ⇓L v′t, σ′f , ∅, c′

and
(vi, v′t, (σ′f , m+ 1)) ∈ VLτML

Using lemma 15 we can show that
(vi, v′t, (σ′f , m)) ∈ VLτML

Using lemma lemma 8 we can we can show that v′t = vt and σ′f = σf , thus

(vi, vt, (σf , m)) ∈ VLτML

Lemma 19 (Map - Unary interpretation)
Assume that ϕ ∈ DJ∆K, |= ϕΦ and the following hold

(lsts, lstt, (σi, k)) ∈ VLlist [φn]φα φτML (1)

for all (vs, vt, (σi, m)) ∈ VLφτ��ML,

(inl vs, g (inl vt), (σi, m)) ∈ EL(φτ ′�� + φτ ′)SMφκL (2)

and for all (vs, vt, (σi, m)) ∈ VLφτML,

(inr vs, g (inr vt), (σi, m)) ∈ EL(φτ ′�� + φτ ′)SMφκ
′

L (3)

then
(lsts, map g lstt, (σi, k)) ∈ ELlist [φn]φα φτ ′Mφ(α ·̂ κ′ +̂ (n −̂ a) ·̂ κ)

L

Proof. The proof proceed by induction on φn.

Lemma 20 (Map - Binary interpretation)
Assume that ϕ ∈ DJ∆K, |= ϕΦ and the following hold

(lsti, lstc, lstt, (σi, σc, β, k)) ∈ VJlist [φn]φα φτK (1)

for all (vi, vc, vt, (σi, σc, β, m)) ∈ VJφτ��K,

(inl vi, inl vc, g (inl vt), (σi, σc, β, m)) ∈ EJ(φτ ′�� + φτ ′)SK0 (2)

and for all (vi, vc, vt, (σi, σc, β, m)) ∈ VJφτK,

(inr vi, inr vc, g (inr vt), (σi, σc, β, m)) ∈ EJ(φτ ′�� + φτ ′)SKκ (3)

then
(lsti, lstc, map g lstt, (σi, σc, β, k)) ∈ EJlist [φn]φα φτ ′Kφα ·̂ φκ
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Proof. We proceed by induction on φn. The interesting case is the inductive one. Assume that φn = n′ + 1
for an integer n′. There are two possible cases

• lsti = vi :: vsi, lstc = vc :: vsc, lstt = inl vt :: vst
From the definition of the logical relation we derive

(vi, vc, vt, (σi, σc, β, k)) ∈ VJφτ��K (A)

and
(vsi, vsc, vst, (σi, σc, β, k)) ∈ VJlist [φn− 1]φα φτK (B)

From the induction hypothesis applied on eq. (B) we derive

(vsi, vsc, map g vst, (σi, σc, β, k)) ∈ EJlist [φn− 1]φα φτ ′Kφα ·̂ φκ (C)

We instantiate eq. (2) with eq. (A) and we derive

(inl vi, inl vc, g (inl vt), (σi, σc, β, m)) ∈ EJ(φτ ′�� + φτ ′)SK0 (D)

We can now combine the two statements above, instantiate them with the appropriate stores and bijections
and use the definition of map in order to obtain

(vi :: vsi, vc :: vsc, map g inl vt :: vst, (σi, σc, β, k)) ∈ EJlist [φn]φα φτ ′Kφα ·̂ φκ

• lsti = vi :: vsi, lstc = vc :: vsc, lstt = inr vt :: vst
From the definition of the logical relation we derive

(vi, vc, vt, (σi, σc, β, k)) ∈ VJφτK (A)

and
(vsi, vsc, vst, (σi, σc, β, k)) ∈ VJlist [φn− 1]φα−1 φτK (B)

From the induction hypothesis applied on eq. (B) we derive

(vsi, vsc, map g vst, (σi, σc, β, k)) ∈ EJlist [φn− 1]φα−1 φτ ′Kφα−1 ·̂ φκ (C)

We instantiate eq. (3) with eq. (A) and we derive

(inr vi, inr vc, g (inr vt), (σi, σc, β, m)) ∈ EJ(φτ ′�� + φτ ′)SKκ (D)

We can now combine the two statements above, instantiate them with the appropriate stores and bijections
and use the definition of map in order to obtain

(vi :: vsi, vc :: vsc, map g inl vt :: vst, (σi, σc, β, k)) ∈ EJlist [φn]φα φτ ′Kφα ·̂ φκ

Lemma 21 (Location Flattening)
Let ∆; Φ ` τ wf, ϕ ∈ DJ∆K and |= ϕΦ. Assume that the following hold:

e1, σi ⇓L1 v1, σf1 , ∅, c1 (A)

e2, σc + σi ⇓L2 v2, σf2 + σi, ∅, c2 (B)
(vi, v1, (σf1, k)) ∈ VLφτML1 (C)

∀ m, (vc, v2, (σf2 + σi, m)) ∈ VLφτML2 (D)
underCτ

Then, for all lists of locations ~lacc and ~l′acc and bijections β such that dom(β) ⊂ σf1 and dom′(β) ⊂ σf1, there
exist v, n, ~vi = [vi1, . . . , vin], ~vc = [vc1, . . . , vcn] and ~l = [l1, . . . , ln], ~l′ = [l′1, . . . , l′n] both with all the elements
pairwise distinct and furthermore for all i ∈ [1, n], li ∈ L1, li /∈ dom(σf1), l′i ∈ L2 and l′i /∈ dom(σf2), such
that:
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1. deepaux(e1, τ, ~lacc), σi ⇓L1 (v,~l@ ~lacc), σf1[〈~l 7→ ~vi〉], ∅, c′1

2. ∆; Φ |= c′1 ≤̇ c1 + costdeep(τ)

3. deep′aux(e2, τ, ~l′acc), σc ⇓L2 ~l′@ ~l′acc, σf2[〈~l′ 7→ ~vc〉], ∅, c′2

4. ∆; Φ |= c′2 ≤̇ c2 + costdeepref(τ)

5. (vi, vc, v, (σf1[〈~l 7→ ~vi〉], σf2[〈~l′ 7→ ~vc〉], β ⊗~l 7→ ~l′, k)) ∈ VJτK

Proof. We proceed by induction on τ . We immediately exclude the (A)S, (A)� and unit cases because of
the C E τ constraint.

• (A)C

In this case,
deepaux(e1, (A)C, ~lacc) = let l = ref !e1 in (l, l :: ~lacc)

and
deep′aux(e2, (A)C, ~vacc) = let l = ref !e2 in l :: acc

The goals are proved as follows:

1. Using the evaluation rules and eq. (A) we can easily derive the following judgment:

deepaux(e1, (A)C, ~lacc), σi ⇓L1 (l, [l]@ ~lacc), σf1 [〈l 7→ σf1(v1)〉], ∅, c1 + 3

and l ∈ L1, l 6∈ dom(σf1)

2. We can trivially show that
∆; Φ |= c1 + 3 ≤̇ c1 + 3

3. Similarly, using and eq. (B), we can show:

e2, σc ⇓L2 [l′]@ ~l′acc, σf2 [〈l′ 7→ σf2(v2)〉], ∅, c2 + 3

and l′ ∈ L2, l′ 6∈ dom(σf2)

4. We can trivially show that
∆; Φ |= c2 + 3 ≤̇ c2 + 3

5. Finally, we need to show that:

(vi, vc, l, (σf1 [〈l 7→ σf1(v1)〉], σf2 [〈l′ 7→ σf2(v2)〉], l 7→ l′, k)) ∈ VJ(A)CK

From the definition of the logical relation it suffices to show that

(vi, σf (v1), (σf1 [〈l 7→ σf1(v1)〉], k)) ∈ VALAML1
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which we get from eq. (A) and ?? and

∀ m, (vc, σf2(v1), (σf2 [〈l′ 7→ σf2(v2)〉], m)) ∈ VALAML2

which we get from eq. (B) and the same lemma.

• τ1 × τ2

We can derive that ∆; Φ |= C E τ1, ∆; Φ |= C E τ2. From eq. (C), eq. (D) and the definition of the logical
relation we can derive that vi = (vil, vir), vc = (vcl, vcr), v1 = (v1l, v1r), v2 = (v2l, v2r) and

(vil, v1l, (σf , k)) ∈ VLτ1ML1 (C1)

(vir, v1r, (σf , k)) ∈ VLτ2ML1 (C2)

∀ m, (vcl, v2l, (σ′f , m)) ∈ VLτ1ML2 (D1)

∀ m, (vcr, v2r, (σ′f , m)) ∈ VLτ2ML2 (D2)

Furthermore we can easily show that:

fst (v1l, v1r), σf1 ⇓L1 v1l, σf1, ∅, 1 (A1)

and
fst (v2l, v2r), σf2 + σi ⇓L2 v2l, σf2 + σi, ∅, 1 (B1)

We can instantiate the induction hypothesis for τ1 with eqs. (A1) to (D1), ~lacc, and ~l′acc and obtain vl, c1l,
c2l, ~vi1 = [vi1, . . . , vin1 ], ~vc1 = [vc1, . . . , vcn1 ] and ~l1 = [l1, . . . , ln1 ], ~l′1 = [l′1, . . . , l′n1 ] both with all the elements
pairwise distinct and furthermore for all i ∈ [1, n1], li ∈ L1, li /∈ dom(σf1), l′i ∈ L2 and l′i /∈ dom(σf2), such
that:

deepaux(fst (v1l, v1r), τ1, ~lacc), σf1

⇓L1

(vl, ~l1@ ~lacc), σf1[〈~l1 7→ ~vi1〉], ∅, c1l

(1.1)

∆; Φ |= c1l ≤̇ 1 + costdeep(τ1) (1.2)

deep′aux(fst (v2l, v2r), τ1, ~l′acc), σf2 + σi

⇓L2

~l′1@ ~l′acc, σf2[〈~l′1 7→ ~vc1〉] + σi, ∅, c2l

(1.3)

∆; Φ |= c2l ≤̇ 1 + costdeep(τ1) (1.4)

and
(vil, vcl, vl, (σf1[〈~l1 7→ ~vi1〉], σf2[〈~l′1 7→ ~vc1〉], β ⊗ ~l1 7→ ~l′1, k)) ∈ VJτ1K (1.5)
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We can also show the following evaluation judgments:

snd (v1l, v1r), σf1[〈~l1 7→ ~vi1〉] ⇓L1 v1r, σf1[〈~l1 7→ ~vi1〉], ∅, 1 (A2)

and
snd (v2l, v2r), σf2[〈~l′1 7→ ~vc1〉] + σi ⇓L2 v2r, σf2[〈~l′1 7→ ~vc1〉] + σi, ∅, 1 (B2)

We can instantiate the induction hypothesis for τ2 with eqs. (A2) to (D2), ~l1@ ~lacc, and ~vc1@ ~vacc and obtain
vr, ~vi2 = [vin1+1, . . . , v

i
n], ~vc1 = [vcn1+1, . . . , v

c
n] and ~l2 = [ln1+1, . . . , ln], ~l′2 = [l′n1+1, . . . , l

′
n] both with all the

elements pairwise distinct and furthermore for all i ∈ [1, n1], li ∈ L1, li /∈ dom(σf1[〈~l1 7→ ~vi1〉]), l′i ∈ L2 and
l′i /∈ dom(σf2[〈~l′1 7→ ~vc1〉]), such that

deepaux(snd (v2l, v2r), τ2, ~l1@ ~lacc), σf1[〈~l1 7→ ~vi1〉] + σi

⇓L1

(vr, ~l2@~l1@ ~lacc), σf1[〈~l1 7→ ~vi1〉][〈~l2 7→ ~vi2〉] + σi, ∅, c1r

(2.1)

∆; Φ |= c1r ≤̇ 1 + costdeep(τ2) (2.2)

deep′aux(snd (v2l, v2r), τ1, ~l′1@ ~l′acc), σf2[〈~l′1 7→ ~vc1〉]
⇓L2

~l′2@~l′1@ ~l′acc, σf2[〈~l′1 7→ ~vc1〉][〈~l′2 7→ ~vc2〉], ∅, c2r

(2.3)

∆; Φ |= c2r ≤̇ 1 + costdeepref(τ2) (2.4)

(vir, vcr, vr, (σf1[〈~l1 7→ ~vi1〉][〈~l2 7→ ~vi2〉], σf2[〈~l′1 7→ ~vc1〉][〈~l′2 7→ ~vc2〉], β ⊗ ~l1 7→ ~l′1 ⊗ ~l2 7→ ~l′2, k)) ∈ VJτ2K (2.5)

Let ~l = ~l2@~l1, ~l′ = ~l′2@~l′1, ~vi = ~vi2@~vi1 and ~vc = ~vc2@~vc1. It is easy to see that all the elements in l (resp l′) are
pairwise different, drawn from L1 (resp. L2), and for all l ∈ ~l, l /∈ dom(σf1) (resp. for all l ∈ ~l′, l /∈ dom(σf2)).
We can now show the goals

1. From eq. (A), eq. (1.1) and eq. (2.1) we can derive that

deepaux(e1, τ1 × τ2, ~lacc), σi
⇓L1

((vl, vr),~l@ ~lacc), σf1[〈~l 7→ ~vi〉], ∅, c1 + c1l + c1r

2. From eq. (1.2) and eq. (2.2) we can derive that

∆; Φ |= c1 + c1l + c1r + 8 ≤̇ c1 + costdeep(τ1) + costdeep(τ2) + 10

3. Similarly from eq. (B), eq. (1.3) and eq. (2.3) we can derive that

deep′aux(e2, τ1 × τ2, ~l′acc), σc
⇓L2

~l′@ ~l′acc, σf2[〈~l′ 7→ ~vc〉], ∅, c2 + c2l + c2r

37



4. From eq. (1.4) and eq. (2.4) we can derive that

∆; Φ |= c2 + c2l + c2r + 2 ≤̇ c2 + costdeep(τ1) + costdeep(τ2) + 4

5. Finally, we need to show that

((vil, vir), (vcl, vcr), (vl, vr), (σf1[〈~l 7→ ~vi〉], σf2[〈~l′ 7→ ~vc〉], β ⊗~l 7→ ~l′, k)) ∈ VJτ1 × τ2K

From eq. (1.5) and ?? we can derive that

(vil, vcl, vl, (σf1[〈~l 7→ ~vi〉], σf2[〈~l′ 7→ ~vc〉], β ⊗~l 7→ ~l′, k)) ∈ VJτ1K

From eq. (2.5) we can derive that

(vir, vcr, vr, (σf1[〈~l 7→ ~vi〉], σf2[〈~l′ 7→ ~vc〉], β ⊗~l 7→ ~l′, k)) ∈ VJτ2K

From the above and the definition and the logical relation follows the result.

• τ = list [m]α τ

We can derive that C E τ and ∆; Φ |= a
.= m. We distinguish the following cases.

I |= φn
.= 0 and |= φa

.= 0
Using eq. (C), eq. (D) and the definition of the logical relation we can derive vi = nil, vc = nil, vt1 = []
and vt2 = []

I |= 0 <̇ ϕm and |= 0 <̇ ϕa

Using eq. (C), eq. (D) and the definition of the logical relation we can derive vi = v′i :: vsi, vc = v′c :: vsc,
vt1 = inr v′t1 :: vst1 and vt2 = inr v′t2 :: vst2 for some v′i, vsi, v′c, vsc, v′t1, vst1, v′t2 and vst2. We can also
derive that

(v′i, v′t1, (σf1, k)) ∈ VLϕτML1 (C1)

(vsi, vst1, (σf1, k)) ∈ VLlist
[
ϕm −̂ 1

]ϕα −̂ 1
ϕτML1 (C2)

∀ m, (v′c, v′t2, (σf2 + σi, m)) ∈ VLϕτML2 (D1)

∀ m, (vsc, vst2, (σf2 + σi, m)) ∈ VLlist
[
ϕm −̂ 1

]ϕα −̂ 1
ϕτML2 (D2)

Furthermore we can easily show that

vst1, σf1 ⇓L1 vst1, σf1, ∅, 0 (A1)

and
vst2, σf2 + σi ⇓L2 vst2, σf2 + σi, ∅, 0 (B1)
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We can instantiate the induction hypothesis with list
[
n −̂ 1

]a −̂ 1
τ , eqs. (A1) to (D1), ~lacc, and ~l′acc

and obtain vst, ~vi1 = [vi1, . . . , vin1 ], ~vc1 = [vc1, . . . , vcn1 ] and ~l1 = [l1, . . . , ln1 ], ~l′1 = [l′1, . . . , l′n1 ] both with all
the elements pairwise distinct and furthermore for all i ∈ [1, n1], li ∈ L1, li /∈ dom(σf1), l′i ∈ L2 and
l′i /∈ dom(σf2), such that

deepaux(vst1, ~lacc, list
[
n −̂ 1

]a −̂ 1
τ), σf1

⇓L1

(vst, ~l1@ ~lacc), σf1[〈~l1 7→ ~vi1〉], ∅, ctl1

(1.1)

∆; Φ |= ctl1 ≤̇ costdeep(list
[
n −̂ 1

]a −̂ 1
τ) (1.2)

deep′aux(vst2, ~l′acc, list
[
n −̂ 1

]a −̂ 1
τ), σf2 + σi

⇓L2

~l′1@ ~l′acc, σf2[〈~l′1 7→ ~vc1〉] + σi, ∅, ctl2

(1.3)

∆; Φ |= ctl1 ≤̇ costdeepref(list
[
n −̂ 1

]a −̂ 1
τ) (1.4)

and

(vsi, vsc, vst, (σf1[〈~l1 7→ ~vi1〉], σf2[〈~l′1 7→ ~vc1〉], β ⊗ ~l1 7→ ~l′1, k)) ∈ VJlist
[
φn −̂ 1

]φa −̂ 1
φτK (1.5)

Using ?? we can derive
(v′i, v′t1, (σf1[〈~l1 7→ ~vi1〉], k)) ∈ VLϕτML1 (C3)

∀ m, (v′c, v′t2, (σf2[〈~l′1 7→ ~vc1〉] + σi, m)) ∈ VLϕτML2 (D3)

We can also show the following evaluation judgments:

v′t1, σf1[〈~l1 7→ ~vi1〉] ⇓L1 v′t1, σf1[〈~l1 7→ ~vi1〉], ∅, 0 (A2)

and
v′t2, σf2[〈~l′1 7→ ~vc1〉] + σi ⇓L2 v′t2, σf2[〈~l′1 7→ ~vc1〉] + σi, ∅, 0 (B2)

We can instantiate the induction hypothesis with τ , eqs. (A2) to (D3), ~l1@ ~lacc, and ~l′1@ ~l′acc and obtain
vt, ~vi2 = [vin1+1, . . . , v

i
n], ~vc1 = [vcn1+1, . . . , v

c
n] and ~l2 = [ln1+1, . . . , ln], ~l′2 = [l′n1+1, . . . , l

′
n] both with all the

elements pairwise distinct and furthermore for all i ∈ [1, n1], li ∈ L1, li /∈ dom(σf1[〈~l1 7→ ~vi1〉]), l′i ∈ L2

and l′i /∈ dom(σf2[〈~l′1 7→ ~vc1〉]), such that

deepaux(v′t1, ~l1@ ~lacc, τ), σf1[〈~l1 7→ ~vi1〉]
⇓L1

(vt, ~l2@~l1@ ~lacc), σf1[〈~l1 7→ ~vi1〉][〈~l2 7→ ~vi2〉], ∅, ch1

(2.1)

∆; Φ |= ch1 ≤̇ costdeep(τ) (2.2)
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deep′aux(v′t2, ~l′1@ ~l′acc, τ), σf2[〈~l′1 7→ ~vc1〉]
⇓L2

~l′2@~l′1@ ~l′acc, σf2[〈~l′1 7→ ~vc1〉][〈~l′2 7→ ~vc2〉], ∅, ch2

(2.3)

∆; Φ |= ch1 ≤̇ costdeepref(τ) (2.4)

and

(vi′ , v′c, vt, (σf1[〈~l1 7→ ~vi1〉][〈~l2 7→ ~vi2〉], σf2[〈~l′1 7→ ~vc1〉][〈~l′2 7→ ~vc2〉] + σi, β ⊗ ~l1 7→ ~l′1 ⊗ ~l2 7→ ~l′2, k)) ∈ VJϕτK

(2.5)
Let ~l = ~l2@~l1, ~l′ = ~l′2@~l′1, ~vi = ~vi2@~vi1 and ~vc = ~vc2@~vc1. It is easy to see that all the elements in l (resp
l′) are pairwise different, drawn from L1 (resp. L2), and for all l ∈ ~l, l /∈ dom(σf1) (resp. for all l ∈ ~l′,
l /∈ dom(σf2)). Also note that

deepaux(vst1, ~lacc, list
[
n −̂ 1

]a −̂ 1
τ) =

foldr (λh. λa. case(h, hl.⊥, hr.let p = deepaux(hr, τ, a) in (inr (fst p) :: fst acc, snd p)))

vst1 ([], ~lacc)

and

deep′aux(vst2, ~l′acc, list
[
n −̂ 1

]a −̂ 1
τ) =

foldr (λh. λa. case(h, hl.⊥, hr.inr deep′aux(hr, τ, a))) vst2 ~l′acc

We can now show the goals.

1. Using eq. (1.1) and eq. (2.1) we can show that

deepaux(e1, ~lacc, list [n]a τ), σi
⇓L1

(inr vt :: vst, ~l2@~l1@ ~lacc), σf1[〈~l1 7→ ~vi1〉][〈~l2 7→ ~vi2〉], ∅, c1 + ch1 + ctl1 + 10

2. Using eq. (1.2) and eq. (2.2) we can show that

∆; Φ |= c1 + ch1 + ctl1 + 10 ≤̇ c1 + costdeep(τ) + costdeep(list
[
n −̂ 1

]a −̂ 1
τ) + 10

3. Using eq. (1.3) and eq. (2.3) we can show that

deep′aux(e2, ~l′acc, list [n]a τ), σc
⇓L2

~l′2@~l′1@ ~l′acc, σf2[〈~l′1 7→ ~vc1〉][〈~l′2 7→ ~vc2〉], ∅, c1 + ch2 + ctl2 + 6
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4. Using eq. (1.4) and eq. (2.4) we can show that

∆; Φ |= c1 + ch2 + ctl2 + 6 ≤̇ c2 + costdeepref(τ) + costdeepref(list
[
n −̂ 1

]a −̂ 1
τ) + 6

5. Using eq. (1.5) and eq. (2.5) we can show that

(v′i :: vsi, v′c :: vsc, inr vt :: vst, (σf1[〈~l1 7→ ~vi1〉][〈~l2 7→ ~vi2〉], σf2[〈~l′1 7→ ~vc1〉][〈~l′2 7→ ~vc2〉]+σi, β⊗~l1 7→ ~l′1⊗~l2 7→ ~l′2, k)) ∈ VJlist [ϕn]ϕa ϕτK
(2.3)

Corollary 22 (Location Flattening)
Assume that the following hold:

e1, σi ⇓L1 v1, σf1 , ∅, c1 (A)

e2, σc ⇓L2 v2, σf2 , ∅, c2 (B)

(vi, v1, (σf1, k)) ∈ VLτML1 (C)

∀ m, (vc, v2, (σf2, m)) ∈ VLτML2 (D)
C E τ

|τ | = n

Then there exist v, ~vi = [vi1, . . . , vin], ~vc = [vc1, . . . , vcn] and ~l = [l1, . . . , ln], ~l′ = [l′1, . . . , l′n] both with all the
elements pairwise distinct and furthermore for all i ∈ [1, n], li ∈ L1, li /∈ dom(σf1), l′i ∈ L2 and l′i /∈ dom(σf2),
such that:

1. deep(e1, τ), σi ⇓L1 (v,~l), σf1[〈~l 7→ ~vi〉], ∅, c1 + costdeep(τ)

2. deep′(e2, τ), σc ⇓L2 ~l′, σf2[〈~l′ 7→ ~vc〉], ∅, c2 + costdeepref(τ)

3. (vi, vc, v, (σf1[〈~l 7→ ~vi〉], σf2[〈~l′ 7→ ~vc〉], k, ~l 7→ ~l′)) ∈ VJτK

Proof. It follows immediately from lemma 21 after unfolding the definitions of deep(e1, τ) and deep′(e2, τ).

Lemma 23 (Location Dereferencing)
Assume that the following hold

et, σi ⇓L1 vt, σf , ∅, c (A)

(vi, vc, vt, (σf , ∅, ∅, m)) ∈ VJτK (B)

Then for all β and σc,

1. conv(et, τ, τ��), σi ⇓L1 v′t, σi, ∅, c+ costconv(τ, τ��)

2. (vi, vc, , (σi, σc, β, m)) ∈ VJτ��K

Proof. We proceed by induction on τ . Some of the cases are shown below.

• τ = (A)µ when µ = � or µ = S
In this case conv(e, τ, τ��) = e and the result follows immediately from the premises and the definition of
VJ·K.
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• τ = (A)C

In this case conv(e, (A)C, (A)�) = !e. The goals are proved as follows:

1. Using eq. (A), we can easily show that

!e, σi ⇓L1 σf (v), σf , ∅, c+ 1

2. We pick an arbitrary β. We need to show that

(vi, vc, σf (v), (σf , σc, β, m)) ∈ VJ(A)�K

It suffices to show that
(vi, vc, σf (v), (σf , σc, ∅, m)) ∈ VAJAK

Which we get by unfolding eq. (B).

• τ = τ1 × τ2

By unfolding eq. (B) we can show that vi = (vil, vir), vc = (vcl, vcr) and v = (vl, vr) for some vil, vir„ vcl,
vcr, vl, and vr, and furthermore that

(vil, vcl, vl, (σf , σc, ∅, m)) ∈ VJτ1K (B1)

and
(vir, vcr, vr, (σf , σc, ∅, m)) ∈ VJτ2K (B2)

We can also show that
fst (vl, vr), σf ⇓L1 vl, σf , ∅, 1 (A1)

snd (vl, vr), σf ⇓L1 vr, σf , ∅, 1 (A2)

We can now instantiate the inductive hypothesis for τ1 with eq. (A1) and eq. (B1) and obtain v′l such that

conv(fst (vl, vr), τ1, τ
��
1 ), σf ⇓L1 v′l, σf , ∅, 1 + costconv(τ1, τ

��
1 ) (C1)

and
∀β, (vil, vcl, v′l, (σf , σc, ∅, m)) ∈ VJτ��1 K (C2)

Similarly, we instantiate the inductive hypothesis for τ2 with eq. (A2) and eq. (B2) and obtain v′r such that

∀β, conv(snd (vl, vr), τ2, τ
��
2 ), σf ⇓L1 v′r, σf , ∅, 1 + costconv(τ2, τ

��
2 ) (D1)

and
(vir, vcr, v′r, (σf , σc, ∅, m)) ∈ VJτ��2 K (D2)

We can now show the goals
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1. Combining eq. (A), eq. (C1) and eq. (D1) we can obtain

deep!(e, τ), σi ⇓L1 (v′l, v′r), σf , ∅, c+ 3 + costconv(τ1, τ
��
1 ) + costconv(τ2, τ

��
2 )

2. We pick an arbitrary β and we instantiate eq. (C2) and eq. (D2) with it. We can easily derive

((vil, vir), (vcl, vcr), (v′l, v′cr), (σf , σc, β, m)) ∈ VJτ��2 × τ��1 K

that proves the goal.

Lemma 24 (Referencing)
Assume that the following hold

et, σi ⇓L1 vt, σf , ∅, c (A)
(vi, vc, vt, (σf , σc, β, m)) ∈ VJτK (B)

Then exists σ′f wL1 σf

1. conv(et, τ��, τ), σi ⇓L1 v′t, σ
′
f , ∅, c+ costconv(τ��, τ)

2. (vi, vc, v′t, (σ′f , ∅, ∅, m)) ∈ VJτK

Proof. The proof is by induction on τ . It resembles the proof of lemma 23.

Lemma 25 (Stable value lemma)
Assume that ∆; Φ ` τ v τ��, ϕ ∈ DJ∆K, |= ϕΦ and

(vi, vc, vt, (σi, σc, β, m)) ∈ VJϕτK

Then
(vi, vc, vt, (σi, ∅, ∅, m)) ∈ VJϕτK

.

Proof. By induction on the size of τ and case analysis on the subtyping judgment.

Lemma 26 (Stable context lemma)
Assume that ∆; Φ ` Γ(x) v Γ(x)��, ϕ ∈ DJ∆K, |= ϕΦ and

(θi, θc, θt, (σi, σc, β, m)) ∈ GJϕΓK

Then β = ∅.

Proof. By induction on the size of Γ and using lemma 25.

Lemma 27 (Subtyping translation evaluation)
If

∆; Φ `κε τ v τ ′ ↪→ g

e, σ1 ⇓L v, σ2, D1, c1

and
g(v), σ2 ⇓L v′, σ3, D2, c2

then
g(e), σ1 ⇓L v′, σ3, D2, c2
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Proof. It follows easily by induction on the subtyping derivation.

Lemma 28 (Subtyping soundness - Unary interpretation)
Assume that ϕ ∈ DJ∆K and |= ϕΦ. The following hold:

1. If ∆; Φ `κε τ v τ ′ ↪→ g and (vs, vt, (σi, m)) ∈ VLϕτML then

(vs, g(vt), (σi, m)) ∈ ELϕτMκL

2. If ∆; ΦA `κ
′
ε A v A′ ↪→ g and (vs, vt, (σi, m)) ∈ VALϕAML then

(vs, g(vt), (σi, m)) ∈ ELϕτMκL

3. If ∆; Φ `κ′ε τ v τ ′ ↪→ g and (es, et, (σi, m)) ∈ ELϕτMκ′L then

(es, g(et), (σi, m)) ∈ ELϕτ ′Mκ +̂ κ′

L

Proof.

Lemma 29 (Subtyping soundness - Binary interpretation)
Assume that ϕ ∈ DJ∆K and |= ϕΦ. The following hold:

1. If ∆; ΦA `κε A v A′ ↪→ g and (vi, vc, vt, (σi, σc, β, m)) ∈ VAJϕAK then

(vi, vc, g(vt), (σf , σ′f , β′, m)) ∈ EJϕA′Kκ

2. If ∆; Φ `κ′ε τ v τ ′ ↪→ g and (vi, vc, vt, (σi, σc, β, m)) ∈ VJϕτK then

(vi, vc, g(vt), (σf , σ′f , β′, m)) ∈ EJϕA′Kκ

3. If ∆; Φ `κ′ε τ v τ ′ ↪→ g and (ei, ec, et, (σi, σc, β, m)) ∈ EJϕτKκ′ then

(ei, ec, g(et), (σi, σc, β, m)) ∈ EJϕτ ′Kκ +̂ κ′

Proof. We will prove the statements 1 and 2 by induction on the subtyping derivation. The cases where the
translation is the identity are trivial, thus omitted.

•
∆; Φ `κ1

δ τ ′1 v τ1 ↪→ g1 ∆; Φ `κ2
δ τ2 v τ ′2 ↪→ g2 ∆; Φ |= κ +̂ κ1 +̂ κ2 +̂ (δ = C) ? 1 : 0 ≤ κ′

∆; ΦA `0
ε τ1

δ(κ)−−→ τ2 v τ ′1
δ(κ′)−−−→ τ ′2 ↪→ λe.fix f(x).g2(e g1(x))

→ 2

There are two possible cases.

I δ = S
We pick arbitrary ji < m, v′i, σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β such that

vi ⇓ v′i, j′i

dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi)

and
dom′(β′) \ dom′(β) ⊆ dom(σ′c) \ dom(σc)

Since vi is a value we can derive v′i = vi and ji = 0. We can now prove the goals.
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1. We can easily show that
vc ⇓ vc, 0

2. We can also show that

λx.g2(vt g1(x)), σ′i ⇓L1 λx.g2(vt g1(x)), σ′i, ∅, 0

3. We can also show that
∅, σ′c, σ′i, β′  σ′c, β, 0

4. We trivially show that 0 ≤ 0

5. This goal is trivial since dom(β) \ dom(β) = ∅ and dom′(β) \ dom′(β) = ∅

6. It remains to show that

(vi, vc, λx.g2(vt g1(x)), (σ′i, σ′c, β′, m)) ∈ VJϕτ ′1
S(ϕκ′)−−−−→ ϕτ ′2K

From the hypothesis we know that

(vi, vc, vt, (σi, σc, β, m)) ∈ VJϕτ1
S(ϕκ)−−−→ ϕτ2K (A)

We can derive that vi = fix f(x). e′i, vc = fix f(x). e′c and vi = fix f(x). e′t for some e′i, e′c and e′t.
We pick arbitrary j < m, σ′′i wL1 σ′i, σ′′c wL2 σ′c, β′′ ≥ β′, v′i, v′c and v′t, such that

(v′i, v′c, v′t, (σ′′i , σ′′c , β′′, j)) ∈ VJϕτ ′1K

dom(β′′) \ dom(β′) ⊆ dom(σ′′i ) \ dom(σ′i)

and
dom′(β′′) \ dom′(β′) ⊆ dom(σ′′c ) \ dom(σ′c)

We have to show that

([x 7→ v′i, f 7→ . . . ]e′i, [x 7→ v′c, f 7→ . . . ]e′c, [x 7→ v′t]g2((fix f(x). e′t) g1(x)), (σ′′i , σ′′c , β′′, j)) ∈ EJϕτ ′2Kϕκ
′

or equivalently

([x 7→ v′i, f 7→ . . . ]e′i, [x 7→ v′c, f 7→ . . . ]e′c, g2((fix f(x). e′t) g1(v′t)), (σ′′i , σ′′c , β′′, j)) ∈ EJϕτ ′2Kϕκ
′

We pick arbitrary j′ < j, σ′′′i wL1 σ′′i , σ′′′c wL2 σ′′c , β′′′ ≥ β′′, vif and ji such that

[x 7→ v′i, f 7→ fix f(x). e′i]e′i ⇓ vif , ji (1)

dom(β′′′) \ dom(β′′) ⊆ dom(σ′′′i ) \ dom(σ′′i )
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and
dom′(β′′′) \ dom(β′′) ⊆ dom(σ′′′c ) \ dom(σ′′c )

Using lemma lemma 15 (note that the conditions for the stores and the bijection hold) we can derive

(v′i, v′c, v′t, (σ′′′i , σ′′′c , β′′′, j)) ∈ VJτ ′1K

From the induction hypothesis applied on the first premise and the above statement we can obtain
v′′t , σ1 wL1 σ′′′i , σ′1 wL1 σ′′′c , c1, β1 ≥ β′′′ and c′1 such that

g1(v′t), σ′′′i ⇓L1 v′′t , σ1, D1, c1 (B1)

D1, σ
′′′
c , σf , β

′′′  σ′1, β1, c
′
1 (B2)

c′1 ≤ κ1 (B3)

dom(β1) \ dom(β′′′) ⊆ dom(σ1) \ dom(σ′′′i )
∧

dom′(β1) \ dom′(β′′′) ⊆ dom(σ′1) \ dom(σ′′′c )
(B4)

and
(v′i, v′c, v′′t , (σ1, σ

′
1, β1, j)) ∈ VJϕτ1K (B5)

We can instantiate eq. (A) with eq. (B5) (note that the conditions for the stores and the bijection
hold) in order to derive that

([x 7→ v′i, f 7→ . . . ]e′i, [x 7→ v′c, f 7→ . . . ]e′c, [x 7→ v′′t , f 7→ . . . ]e′t, (σ′1, σ′1, β1, j)) ∈ EJϕτ2Kϕκ

Form the induction hypothesis for the second premise and the above statement can derive that

([x 7→ v′i, f 7→ . . . ]e′i, [x 7→ v′c, f 7→ . . . ]e′c, g2([x 7→ v′′t , f 7→ . . . ]e′t), (σ1, σ
′
1, β1, j)) ∈ EJϕτ ′2Kϕκ+ϕκ2

(C)
We instantiate eq. (C) with the above, eq. (1), σ1, σ′1 and β1 (note that the preconditions for the
stores and the bijection hold) and we obtain vcf , jc, vtf , σ2, D2, c2, σ′2, β2, c′2 such that:

[x 7→ vc, f 7→ fix f(x). e′c]e′c ⇓ vcf , jc (C1)

g2([x 7→ v′′t , f 7→ fix f(x). e′t]e′t), σf ⇓L1 vtf , σ1, D, c2 (C2)

D2, σ
′
1, σ2, β1  σ′2, β2, c

′
2 (C3)

c′2 ≤ ϕκ2 + ϕκ (C4)
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dom(β2) \ dom(β1) ⊆ dom(σ2) \ dom(σ1)
∧

dom′(β2) \ dom′(β1) ⊆ dom(σ′2) \ dom(σ′1)
(C5)

and
(vif , vcf , vtf , (σ2, σ

′
2, β2, m− ji)) ∈ VJϕτ ′2K (C6)

Using eq. (B1), eq. (C2) and lemma 27 we can show that

g2((fix f(x). e′t) g1(vt)), σ′′i ⇓L1 vtf , σ2, D1 +D2, c1 + c2 + 1

We can apply lemma 13 to eq. (B2) and eq. (C3) and derive

D1 +D2, σ
′′
c , σ2, β

′′  σ′2, β2, c
′
1 + c′2

From eq. (B3) and eq. (C4)
c′1 + c′2 ≤ ϕκ+ ϕκ1 + ϕκ2

The result then follows from the above and eq. (C1), eq. (C5) and eq. (C6).

I δ = C
We pick arbitrary ji < m, v′i, σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β such that

vi ⇓ v′i, j′i

dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi)

and
dom′(β′) \ dom′(β) ⊆ dom(σ′c) \ dom(σc)

Since vi is a value we can derive v′i = vi and ji = 0. We can now prove the goals.

1. We can easily show that
vc ⇓ vc, 0

2. We can also show that

λx. let v = vt g1(x) in g2(v), σ′i ⇓L1 λx. let v = vt g1(x) in g2(v), σ′i, ∅, 0

3. We can also show that
∅, σ′c, σ′i, β′  σ′c, β

′, 0

4. We trivially show that |= 0 ≤̇ 0

5. This goal is trivial since dom(β′) \ dom(β′) = ∅ and dom′(β′) \ dom′(β′) = ∅
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6. It remains to show that

(vi, vc, λx.g2(vt g1(x)), (σ′i, σ′c, β, m)) ∈ VJϕτ ′1
C(ϕκ′)−−−−→ ϕτ ′2K

From the hypothesis we know that

(vi, vc, vt, (σi, σc, β, m)) ∈ VJϕτ1
C(ϕκ)−−−−→ ϕτ2K

We can unfold the definition and obtain

(vi, vt, (σi, j)) ∈ VLϕτ1
C(ϕκ)−−−−→ ϕτ2ML1 (A)

∀m, (vc, β(vt), (σc + σi, j)) ∈ VLϕτ1
C(ϕκ)−−−−→ ϕτ2ML2 (B)

Also using the premises we can construct a derivation for

∆; ΦA `0
C τ1

δ(κ)−−→ τ2 v τ ′1
δ(κ′)−−−→ τ ′2 ↪→ λe.fix f(x).g2(e g1(x)) (C)

We apply lemma lemma 28 to eq. (A) and eq. (C) and derive

(vi, λx.g2(vt g1(x)), (σi, j)) ∈ ELϕτ1
C(ϕκ′)−−−−→ ϕτ2M0

L1

Using the above we can easily show that

(vi, λx.g2(vt g1(x)), (σi, j)) ∈ VLϕτ1
C(ϕκ′)−−−−→ ϕτ2ML1 (A1)

Similarly, we apply lemma lemma 28 to eq. (B) and eq. (C) and we derive

∀m, (vi, λx.g2(β(vt) g1(x)), (σc + σi, j)) ∈ ELϕτ ′1
C(ϕκ′)−−−−→ ϕτ ′2M

0
L2

Using the above we can easily show that

∀m, (vi, λx. let v = β(vt) g1(x) in g2(v), (σc + σi, j)) ∈ VLϕτ ′1
C(ϕκ′)−−−−→ ϕτ ′2ML2 (A2)

Using eq. (A1) and eq. (A2) we can show that

(vi, vc, vt, (σi, σc, β, m)) ∈ VJϕτ ′1
C(ϕκ′)−−−−→ ϕτ ′2K

which proves the goal.

•
∆t :: S; Φ `κ1

ε τ v τ ′ ↪→ g ∆; Φ |= κ +̂ κ1 +̂ ((δ = C) ? 1 : 0) ≤ κ′

∆; Φ `0
ε ∀t

δ(κ)
:: S. τ v ∀t

δ(κ′)
:: S. τ ′ ↪→ λe.λx.g(e ())

∀2
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The proof of this case is similar to the one of → 2.

•
∆; Φ `κ1

ε τ1 v τ ′1 ↪→ g1 ∆; Φ `κ2
ε τ2 v τ ′2 ↪→ g2 ∆; Φ |= κ

.= κ1 +̂ κ2

∆; Φ `κε τ1 × τ2 v τ ′1 × τ ′2 ↪→ λe.(g1(fst e),g2(snd e))
×

The proof of this case follows easily from the induction hypotheses for the two premises.

•
∆; Φ |= κ

.= (ε = C) ? 1 +̂ ˆmax(costconv(τ1, τ
��
1 ), costconv(τ2, τ

��
2 )) : 0

∆; Φ `κε (τ1 + τ2)� v (τ��1 + τ��2 )� ↪→ λe.case(e, x.inl conv(x, τ1, τ
��
1 ), y.inr conv(y, τ2, τ

��
2 ))

+1

From the hypothesis we know that

(vi, vc, vt, (σi, σc, β, m)) ∈ VJ(ϕτ1 + ϕτ2)�K

From this we derive
(vi, vc, vt, (σi, ∅, ∅, j)) ∈ VAJϕτ1 + ϕτ2K

There are two possible cases, either vi = inl v′i, vc = inl v′c and vt = inl v′t or vi = inr v′i, vc = inr v′c

and vt = inr v′t. The two cases are symmetric, so we will consider only the first one. From the definition of
the logical relation we obtain

(v′i, v′c, v′t, (σi, ∅, ∅, m)) ∈ VJϕτ1K

We pick arbitrary ji < m, v′′i , σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β such that

v′i ⇓ v′′i , ji

dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi)

and
dom′(β′) \ dom′(β) ⊆ dom(σ′c) \ dom(σc)

Since v′i is a value we obtain v′i = v′′i and ji = 0. Since vt is a value we obtain

vt, σ
′
i ⇓L1 vt, σ

′
i, ∅, 0

We can apply lemma 23 to the two statements above and obtain

conv(v′t, τ1, τ
��
1 ), σ′i ⇓L1 v′′t , σ

′
i, ∅, costconv(τ1, τ

��
1 ) (A)

and
(v′i, v′c, v′′t , (σi, ∅, ∅, m)) ∈ VJϕτ1K (B)

We can now show the goals

1. Since v′c is a value we can easily derive inl v′c ⇓ inl v′c, 0
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2. Using eq. (A) we can show

case(inl v′t, x.inl conv(x, τ1, τ
��
1 ), x.inr conv(x, τ2, τ

��
2 )), σ′i ⇓L1 inl v′′t , σ

′
i, ∅, 1+costconv(τ1, τ

��
1 )

3. We can trivially show that
∅, σ′c, σ′i, β′  σ′c, β

′, 0

4. We can trivially show that |= 0 ≤̇ 0

5. This goal is trivial since dom(β′) \ dom(β′) = ∅ and dom′(β′) \ dom′(β′) = ∅

6. We have to show that

(inl v′i, inl v′c, σ
′
i, (σ′c, β′, m, ∈))VJ(ϕτ��1 + ϕτ��2 )�K

which follows from the definition of the logical relation and eq. (B).

•
∆; Φ |= κ

.= (ε = C) ? 1 +̂ ˆmax(costconv(τ��1 , τ1), costconv(τ��2 , τ2)) : 0

∆; Φ `κε (τ��1 + τ��2 )� v (τ1 + τ2)� ↪→ λe.case(e, x.conv(x, τ��1 , τ1), y.conv(y, τ��2 , τ2))
+2

From the hypothesis we know that

(vi, vc, vt, (σi, σc, β, j)) ∈ VJ(ϕτ��1 + ϕτ��2 )�K

From this we derive
(vi, vc, vt, (σi, ∅, ∅, j)) ∈ VAJϕτ��1 + ϕτ��2 K

There are two possible cases, either vi = inl v′i, vc = inl v′c and vt = inl v′t or vi = inr v′i, vc = inr v′c

and vt = inr v′t, for some v′i, v′c and v′t. The two cases are symmetric, so we will consider only the first one.
From the definition of the logical relation we obtain

(v′i, v′c, v′t, (σi, ∅, ∅, j)) ∈ VJϕτ��1 K

We pick arbitrary ji < m, v′′i , σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β such that

v′i ⇓ v′′i , ji

dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi)

and
dom′(β′) \ dom′(β) ⊆ dom(σ′c) \ dom(σc)

Since v′i is a value we obtain v′i = v′′i and ji = 0. Since vt is a value we obtain

vt, σ
′
i ⇓L1 vt, σ

′
i, ∅, 0
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We can apply lemma 24 to the two statements above and obtain σf wL1 σ′i such that

conv(v′t, τ��1 , τ1), σ′i ⇓L1 v′′t , σf , ∅, costconv(τ��1 , τ1) (A)

and
(v′i, v′c, v′′t , (σf , ∅, ∅, m)) ∈ VJϕτ1K (B)

We can now show the goals

1. Since v′c is a value we can easily derive inl v′c ⇓ inl v′c, 0

2. Using eq. (A) we can show

case(inl v′t, x.inl conv(x, τ��1 , τ1), x.inr conv(x, τ��2 , τ2)), σ′i
⇓L1

inl v′′t , σf , ∅, 1 + costconv(τ��1 , τ1)

3. We can trivially show that
∅, σ′c, σ′i, β′  σ′c, β

′, 0

4. We can trivially show that |= 0 ≤̇ 0

5. This goal is trivial since dom(β′) \ dom(β′) = ∅ and dom′(β′) \ dom′(β′) = ∅

6. We have to show that

(inl v′i, inl v′c, σf , (σ′c, β′, m, ∈))VJ(ϕτ1 + ϕτ2)�K

or, equivalently,
(inl v′i, inl v′c, σf , (∅, ∅, m, ∈))VJ(ϕτ1 + ϕτ2)�K

which follows from the definition of the logical relation and eq. (B).

•
∆; Φ |= n

.= n′ ∆; Φ |= α
.= α′ ∆; Φ `κ′S τ v τ ′ ↪→ g ∆; Φ |= κ

.= α ·̂ κ′

∆; Φ `κS list [n]α τ v list
[
n′
]α′

τ ′ ↪→ λe.map λz. case(z, x.inl conv(drop(g(conv(x, τ��, τ))), τ ′, τ ′��), y.inr g y) e
l2-S

We will prove that for all (vi, vc, vt, (σi, σc, β, m)) ∈ VJτ��K,

(inl vi, inl vc, (λz. case(z, x.inl conv(g(conv(x, τ��, τ)), τ, τ��), y.inr g y)) inl vt, (σi, σc, β, m))

∈ EJτ�� + τK0

and for all (vi, vc, vt, (σi, σc, β, m)) ∈ VJτK,

(inr vi, inr vc, (λz. case(z, x.inl conv(g(conv(x, τ��, τ)), τ, τ��), y.inr g y)) inr vt, (σi, σc, β, m))

∈ EJτ�� + τKκ
′
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The result then follows from lemma 20.

To prove the first goal we pick arbitrary vi, vc, vt, σi, σc, β and m such that

(vi, vc, vt, (σi, σc, β, m)) ∈ VJτ��K

We pick arbitrary ji < m, v′i, σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β such that

inl vi ⇓ v′i, ji

dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi)

and
dom′(β′) \ dom′(β) ⊆ dom(σ′c) \ dom(σc)

Since inl vi is a value we obtain inl vi = v′i and ji = 0. Since vt is a value we obtain

vt, σ
′
i ⇓L1 vt, σ

′
i, ∅, 0

Using lemma 15 we can obtain

(vi, vc, vt, (σ′i, σ′c, β′, m)) ∈ VJτ��K

We can apply lemma 23 to the two statements above and we obtain

conv(vt, τ��, τ), σ′i ⇓L1 v′t, σf , ∅, costconv(τ��, τ) (A)

(vi, vc, v′t, (σf , ∅, ∅, m)) ∈ VJτK (B)

We can apply the induction hypothesis and derive

(vi, vc, g(v′t), (σf , ∅, ∅, m)) ∈ EJτ ′Kκ′

We instantiate the above with 0 (note that 0 < m), σf (note that σf wL1 σ′i), ∅, ∅ and vi ⇓ vi, 0, and we
obtain v′c, jc, v′′t , σ1, D1, c1, σ′1, β1, c′1 such that:

vc ⇓ v′c, jc (C1)

and since vc is a value we immediately derive v′c = vc and jc = 0.

g(v′t), σf ⇓L1 v′′t , σ1, D1, c1 (C2)

D1, ∅, σ1, ∅ σ′1, β1, c
′
1 (C3)
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and from the definition of change propagation we can show σ′1 = ∅, β1 = ∅ and c′1 = 0.

|= 0 ≤̇ ϕκ′ (C4)

and
(vi, vc, v′′t , (σ1, ∅, ∅, m)) ∈ VJτ ′K (C5)

Using eq. (C2), eq. (A) and lemma 27 we can show

drop(g(conv(vt, τ��, τ))), σf ⇓L1 v′′t , σ1, ∅, c1 + costconv(τ��, τ) + 1 (D)

We can apply lemma 23 to eq. (D) and eq. (C5) and derive

conv(drop(g(conv(vt, τ��, τ))), τ ′, τ ′��), σf
⇓L1

v′′t , σ1, ∅, c1 + costconv(τ��, τ) + costconv(τ ′, τ ′��) + 1
(E)

(vi, vc, v′′t , (σ1, σ
′
c, β

′, m)) ∈ VJτ ′��K (F)

We can now show the goals

1. We can easily derive that inl vc ⇓ inl vc, 0

2. Using eq. (E)

(λz. case(z, x.inl conv(drop(g(conv(x, τ��, τ))), τ, τ��), y.inr g y)) inl vt, σ′i
⇓L1

inl v′′t , σ1, ∅, c1 + costconv(τ��, τ) + costconv(τ, τ��) + 3

3. We can trivially show that
∅, σ′c, σ′i, β′  σ′c, β

′, 0

4. We can trivially show that 0 ≤ 0

5. This goal is trivial since dom(β′) \ dom(β′) = ∅ and dom′(β′) \ dom′(β′) = ∅

6. Using eq. (F) we can show that

(inl vi, inl vc, inl v′′t , (σ1, σ
′
c, β

′, m)) ∈ VJτ ′�� + τ ′K

We will now prove the second goal. We pick arbitrary vi, vc, vt, σi, σc, β and m such that

(vi, vc, vt, (σi, σc, β, m)) ∈ VJτK

We can apply the induction hypothesis and derive

(vi, vc, g(vt), (σi, σi, σc, m)) ∈ EJτ ′Kκ′
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Using the above we can easily prove that

(inr vi, inr vc, (λz. case(z, x., . . . , , y.inr g y)) inr vt, (σi, σc, β, m)) ∈ EJτ ′�� + τ ′Kκ
′

That proves the goal.

•
∆, t :: S; Φ `κε τ v τ ′ ↪→ g t 6∈ FV (Φ)

∆; Φ `κε ∃t. τ v ∃t. τ ′ ↪→ g
∃

This case follows easily from the induction hypothesis.

•
∆; Φ |= µ ≤ µ′ ∆; Φ |= κ

.= costconv((A)µ, (A)µ′)

∆; Φ `κε (A)µ v (A)µ′ ↪→ λe.conv(e, (A)µ, (A)µ′)
µ

If µ = µ′ or both of µ, µ′ are either S or � the translation function is the identity and the result is trivial.
When µ = � and µ′ = C the result follows using lemma lemma 24. The only remaining case is when µ = S
and µ′ = C.

From the hypothesis we know

(vi, vc, vt, (σi, σc, β, j)) ∈ VJ(ϕA)SK

thus
(vi, vc, vt, (σi, σc, β, j)) ∈ VAJϕAK (A)

The goals are proved as follows

1. We can show that
conv(vt, (ϕA)S, (ϕA)C), σi ⇓L1 l, σi[l 7→ vt], ∅, 1

where l 6∈ dom(σi).

2. We can show that
∅, σc, σi, β  σc, β, 0

3. We trivially show that 0 ≤ 0

4. This goal is trivial since dom(β) \ dom(β) = ∅ and dom′(β) \ dom′(β) = ∅

5. We have to show that
(vi, vc, l, (σi[l 7→ vt], σc, β, j)) ∈ VAJ(ϕA)CK

Which follows easily from eq. (A) and lemma 15.

•
∆; ΦA `κ

′
S A v A′ ↪→ g ∆; Φ |= κ

.= κ′ +̂ 2

∆; Φ `κS (A)C v (A′)C ↪→ λe.let l = ref g(!e) in let () = push([l], λ(). ref g(!e)) in l
C2-S
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From the hypotheses we know

(vi, vc, lt, (σi, σc, β, j)) ∈ VJ(ϕA)CK

thus we can derive
(vi, σi(lt), (σi, j)) ∈ VALϕAML1 (A1)

and
∀ m, (vc, vc, (σi + σc(β(lt)), m)) ∈ VALϕAML2 (A2)

We can apply lemma 28 to eq. (A1) and obtain vt1

g(σi(lt)), σi ⇓L1 vt1, σf , ∅, c1

and
(vi, vt1, (σf , j)) ∈ VALϕA′ML1

From the above we can show that

let l = ref g(!lt) in let () = push([l], λ(). ref g(!lt)) in l, σi
⇓L1

l, σf [l 7→ vt1], ([l], λ(). ref g(!lt)), c1 + 4

and
(vi, l, (σf [l 7→ vt1], j)) ∈ VALϕA′ML1 (A)

Similarly we can apply lemma 28 to eq. (A2) and obtain vt2

g(σc + σi(β(lt))), σc + σi ⇓L2 vt2, σ
′
f + σi, ∅, c2

c2 ≤ ϕκ

and
∀ m, (vc, vt2, (σ′f , m)) ∈ VALϕA′ML1

From the above we can show that

([l], λ(). ref g(!lt)), σc, σf , β  σ′f [l′ 7→ vt2], β[l 7→ l′], c2 + 2

and
∀ m, (vc, l′, (σ′f [l′ 7→ vt2], m)) ∈ VALϕA′ML1 (B)
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We can easily show that c2 + 2 ≤ ϕκ. Furthermore from it follows that

(vi, vc, l, (σf [l 7→ vt1], σ′f [l′ 7→ vt2], [l 7→ l′], j)) ∈ VJ(ϕA′)CK

and since l /∈ dom(β) and l′ /∈ dom′(β) we can derive

(vi, vc, l, (σf [l 7→ vt1], σ′f [l′ 7→ vt2], β[l 7→ l′], j)) ∈ VJ(ϕA′)CK

that proves the goal.

•
∆; Φ `κ1

ε τ1 v τ2 ↪→ g1 ∆; Φ `κ2
ε τ2 v τ3 ↪→ g2 ∆; Φ |= κ

.= κ1 +̂ κ2

∆; Φ `κε τ1 v τ3 ↪→ λe.g2(g1(e))
tran

This case follows easily from the induction hypothesis applied on the two premises.

•
∆; Φ ∧ C `κ1

ε η ↪→ g1 ∆; Φ ∧ ¬̇C `κ2
ε η ↪→ g2

∆; Φ `0
ε η ↪→ λe.⊥

split(†)

This case follows by contradiction.

•
∆; Φ ∧ C ′ |= C ∆; Φ `κε τ v τ ′ ↪→ g

∆; Φ `κε C → τ v C ′ → τ ′ ↪→ g
c-imp

This case follows easily from the induction hypothesis.

•
∆; Φ ∧ C |= C ′ ∆; Φ `κε τ v τ ′ ↪→ g

∆; Φ `κε C ∧ τ v C ′ ∧ τ ′ ↪→ g
c-and

This case follows easily from the induction hypothesis.

Theorem 30 (Fundamental theorem - Unary interpretation)
Assume that the following hold:

∆; Φ; Γ `κε e : τ ↪→ peq

ϕ ∈ DJ∆K

(θs, θt, (σ, m)) ∈ GLϕΓML

|= ϕΦ
ϕε = C

Then
(θse, θtpeq, (σ, m)) ∈ ELϕτMϕκL

Proof.
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Theorem 31 (Fundamental theorem - Binary interpretation)
Assume that the following hold:

∆; Φ; Γ `κε e : τ ↪→ peq

ϕ ∈ DJ∆K

(θi, θc, θt, (σi, σc, β, m)) ∈ GJϕΓK

.
ϕε = S

|= ϕΦ

dom(β) ⊆ dom(σi) ∧ dom′(β) ⊆ dom(σc)

Then
(θie, θce, θtpeq, (σi, σc, β, m)) ∈ EJϕτKϕκ

Proof. We proceed by induction on the typing derivation of e. For each of the following cases we pick ϕ, θi,
θc, θt, σi, σc, β and m such that :

• ϕ ∈ DJ∆K

• |= ϕΦ

• ϕε = S

• (θi, θc, θt, (σi, σc, β, m)) ∈ GJϕΓK

•
∆; Φ; Γ, f : (τ1

δ(κ)−−→ τ2)S, x : τ1 `κδ e : τ2 ↪→ peq

∆; Φ; Γ `0
ε fix f(x). e : (τ1

δ(κ)−−→ τ2)S ↪→ fix f(x). peq
fix1

We pick arbitrary ji < m, vi, σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β such that

θi(fix f(x). e) ⇓ vi, ji

dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi)

and
dom′(β′) \ dom′(β) ⊆ dom(σ′c) \ dom(σc)

By inversion of the evaluation relation we derive that ji = 0 and vi = θi(fix f(x). e)

The goals are proved as follows:

1. We can easily derive that
θc(fix f(x). e) ⇓ θc(fix f(x). e), 0

2. Similarly, we can show

θt(fix f(x). peq), σ′i ⇓L1 θt(fix f(x). peq), σ′i, ∅, 0
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3. From the definition of the change propagation algorithm we can easily obtain that:

∅, σ′c, σi, β′  σ′c, β
′, 0

4. It is obvious that
0 ≤ 0

5. we can trivially show that (σi, σc, β, j) ≥ (σi, σc, β, j)

6. Finally, we need to show

(θi(fix f(x). e), θc(fix f(x). e), θt(fix f(x). peq), (σ′i, σ′c, β′, m)) ∈ VJ(ϕτ1
δ(ϕκ)−−−→ ϕτ2)SK

We proceed by case analysis.

I δ = S
By the induction hypothesis we obtain that

∀ (θi, θc, θt, (σi, σc, β, m)) ∈ GJϕΓ, f : (ϕτ1
S(ϕκ)−−−→ ϕτ2)S, x : ϕτ1K,

(θie1, θce1, θtpe1q, (σi, σc, β, m)) ∈ EJϕτ2Kϕκ (A)

We proceed by induction on m.
? m = 0
The result holds vacuously from the definition of the logical relation.

? m = m′ + 1
From the induction hypothesis we obtain

(θi(fix f(x). e), θc(fix f(x). e), θt(fix f(x). peq), (σ′i, σ′c, β′, m′)) ∈ VJ(ϕτ1
S(ϕ(κ))−−−−→ ϕτ2)SK

(B)
We pick arbitrary W > (σ′i, σ′c, β′, m′ + 1) such that

(vi, vc, vt, W ) ∈ VJϕτ1K (1)

We can apply lemma 15 to eq. (B) and derive

(θi(fix f(x). e), θc(fix f(x). e), θt(fix f(x). peq), W ) ∈ VJ(ϕτ1
S(ϕκ)−−−→ ϕτ2)SK (2)

From the hypotheses we know that

(θi, θc, θt, (σ′i, σ′c, β′, m)) ∈ GJϕΓK

Similarly, we can use lemma 15 to derive

(θi, θc, θt, W ) ∈ GJϕΓK
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From the above and eq. (1), eq. (2) we can easily show that

(θi[x 7→ vi, f 7→ fix f(x). θiei], θc[x 7→ vc, f 7→ fix f(x). θcec], θt[x 7→ vt, f 7→ fix f(x). θtet], W )

∈ GJϕΓ, f : (ϕτ1
S(ϕκ)−−−→ ϕτ2)SK

We can instantiate eq. (A) with the above and derive that

(θi[x 7→ vi, f 7→ fix f(x). θie]e, θc[x 7→ vc, f 7→ fix f(x). θce]e, θt[x 7→ vt, f 7→ fix f(x). θtpeq]peq, W )

∈ EJϕτ2Kϕκ

which proves the goal.

I δ = C
By the definition of the logical relation it suffices to show

(θi(fix f(x). e), θt(fix f(x). peq), (σ′i, m)) ∈ VALϕτ1
C(ϕκ)−−−−→ ϕτ2ML1

and

∀ m, (θc(fix f(x). e), β′(θt(fix f(x). peq)), (σ′c + σ′i, m)) ∈ VALϕτ1
C(ϕκ)−−−−→ ϕτ2ML2

To show the first goal we will proceed by induction on m.

? m = 0
The result holds vacuously from the definition of the logical relation.

? m = m′ + 1
From the induction hypothesis we obtain

(θi(fix f(x). e), θt(fix f(x). peq), (σ′i, m′)) ∈ VALϕτ1
C(ϕκ)−−−−→ ϕτ2ML1 (A)

We pick arbitrary j < m′ + 1, σ′′i wL1 σ′i, vi, and vt such that

(vi, vt, (σ′′i , j)) ∈ VLϕτ1ML1 (1)

Since j ≤ m′ and σ′′i wL1 σ′i, we can apply ?? and ?? to eq. (A) and derive

(θi(fix f(x). e), θt(fix f(x). peq), (σ′′i , j)) ∈ VALϕτ1
C(ϕκ)−−−−→ ϕτ2ML1 (2)

From the hypotheses we know that

(θi, θc, θt, (σi, σc, β, m)) ∈ GJϕΓK
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We can apply lemma 16 and lemma 15 to derive

(θi, θt, (σ′′i , j)) ∈ GLϕΓML1

From the above, eq. (1) and eq. (2) we can easily show that

(θi[x 7→ vi, f 7→ fix f(x). θiei], θt[x 7→ vt, f 7→ fix f(x). θtet], (σ′′i , j)) ∈ GLϕΓ, f : (ϕτ1
S(ϕκ)−−−→ ϕτ2)SML1

We can now apply theorem 30 to the premise of the typing derivation and instantiate the result
with the above statement in order to derive that

(θi[x 7→ vi, f 7→ fix f(x). θie]e, θt[x 7→ vt, f 7→ fix f(x). θtpeq]peq, (σ′′i , j)) ∈ ELϕτ2M
ϕκ
L1

that proves the goal.

To prove the second goal we pick an arbitrary m. Using lemma 14 we can show that β′(peq) = peq.
Consequently, it suffices to show that

∀ m, (θc(fix f(x). e), (β′ · θt)(fix f(x). peq), (σ′c + σ′i, m)) ∈ VALϕτ1
C(ϕκ)−−−−→ ϕτ2ML2

We proceed by induction on m.

? m = 0
The result holds vacuously from the definition of the logical relation.

? m = m′ + 1
From the induction hypothesis we obtain

(θc(fix f(x). e), (β′ · θt)(fix f(x). peq), (σ′c, m′)) ∈ VALϕτ1
C(ϕκ)−−−−→ ϕτ2ML2 (B)

We pick arbitrary j < m′ + 1, σ′′ wL1∪L2 σ′c + σ′i, vc, and vt such that

(vc, vt, (σ′′, j)) ∈ VLϕτ1ML2 (3)

Since j ≤ m′ and σ′′ wL1∪L2 σ′c, we can apply lemma 15 to eq. (B) and derive

(θc(fix f(x). e), (β′ · θt)(fix f(x). peq), (σ′′, j)) ∈ VALϕτ1
C(ϕκ)−−−−→ ϕτ2ML2 (4)

From the hypotheses we know that

(θi, θc, θt, (σi, σc, β, m)) ∈ GJϕΓK

We can apply lemma 15 and lemma 16 and derive

(θc, β′ · θt, (σ′′, j)) ∈ GLϕΓML2
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From the above and eq. (3), eq. (4) we can derive that

(θc[x 7→ vi, f 7→ fix f(x). θcec], (β′ · θt)[x 7→ vt, f 7→ fix f(x). (β′ · θt)et], (σ′′, j))

∈ GLϕΓ, f : (ϕτ1
S(ϕκ)−−−→ ϕτ2)SML2

We can now apply theorem 30 to the premise of the typing derivation and instantiate the result
with the above statement in order to derive that

(θi[x 7→ vi, f 7→ fix f(x). θie]e, (β′ ·θt)[x 7→ vt, f 7→ fix f(x). (β′ ·θt)peq]peq, (σ′′c , j)) ∈ ELϕτ2M
ϕκ
L2

which proves the goal.

•

∆; Φ; Γ `κ1
S e1 : (τ1

S(κ′)−−−→ τ2)µ ↪→ pe1q

∆; Φ; Γ `κ2
S e2 : τ1 ↪→ pe2q µ ≤ S ∆; Φ |= κ

.= κ′ +̂ κ1 +̂ κ2

∆; Φ; Γ `κS e1 e2 : τ2 ↪→ pe1q pe2q
app1

By the induction hypothesis applied on the premises we get:

(θie1, θce1, θtpe1q, (σi, σc, β, m)) ∈ EJ(ϕτ1
S(ϕκ′)−−−−→ ϕτ2)SKϕκ1 (A)

and
(θie2, θce2, θtpe2q, (σi, σc, β, m)) ∈ EJϕτ1Kϕκ2 (B)

We pick arbitrary ji < m, vi, σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β such that

θi(e1 e2) ⇓ vi, ji

dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi)

and
dom′(β′) \ dom′(β) ⊆ dom(σ′c) \ dom(σc)

By inversion of the evaluation relation we derive the following:

θie1 ⇓ fix f(x). e′i, j1 (1)

θie2 ⇓ v′i, j2 (2)

e′i[x/v′i][f/fix f(x). e′i] ⇓ vi, j3 (3)

ji = j1 + j2 + j3 + 1

for some e′i, v′i, j1, j2 and j3

We instantiate eq. (A) with j1 (note that j1 < m), σ′i, σ′c, β′ (note that σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β and
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the required conditions for the bijections hold), and eq. (1) and we obtain vc1, j′1, vt1, σ1, D1, c1, σ′1, β1, c′1
such that:

θce1 ⇓ vc1, j′1 (A1)

θtpe1q, σi ⇓L1 vt1, σ1, D1, c1 (A2)

D1, σ
′
c, σ1, β

′  σ′1, β1, c
′
1 (A3)

c′1 ≤ ϕκ1 (A4)

dom(β1) \ dom(β′) ⊆ dom(σ1) \ dom(σ′i) ∧ dom′(β1) \ dom′(β′) ⊆ dom(σ′1) \ dom(σ′c) (A5)

and
(fix f(x). e′i, vc1, vt1, (σ1, σ

′
1, β1, m− j1)) ∈ VJ(ϕτ1

S(ϕκ′)−−−−→ ϕτ2)SK

By unfolding the last statement we can derive that

(fix f(x). e′i, vc1, vt1, (σ1, σ
′
1, β1, m− j1)) ∈ VAJϕτ1

S(ϕκ′)−−−−→ ϕτ2K (A6)

and that vc1 = fix f(x). e′c, vt1 = fix f(x). e′t for some e′c, e′t.

We now instantiate eq. (B) with j2 (note that j2 < m) σ1, σ′1, β1 (note that σ1 wL1 σi, σ′1 wL2 σc and
β1 ≥ β) eq. (A5) and eq. (2), and we obtain v′c, j′2, v′t, σ2, D2, c2, σ′2, β2, c′2 such that:

θce2 ⇓ v′c, j′2 (B1)

θtpe2q, σ1 ⇓L1 v′t, σ2, D2, c2 (B2)

D2, σ
′
1, σ2, β1  σ′2, β2, c

′
2 (B3)

c′2 ≤ ϕκ2 (B4)

dom(β2) \ dom(β1) ⊆ dom(σ2) \ dom(σ1) ∧ dom′(β2) \ dom′(β1) ⊆ dom(σ′2) \ dom(σ′1) (B5)

and
(v′i, v′c, v′t, (σ2, σ

′
2, β2, m− j2)) ∈ VJϕτ1K

We apply lemma 15 at the last statement and we obtain

(v′i, v′c, v′t, (σ2, σ
′
2, β2, m− j1 − j2 − 1)) ∈ VJϕτ1K (B6)

We instantiate eq. (A6) with σ2, σ′2, β2, eq. (B5) and eq. (B6) and we derive

(e′i[x/v′i][f/. . .], e′c[x/v′c][f/. . .], e′t[x/v′t][f/. . .], (σ2, σ
′
2, β2, m− j1 − j2 − 1)) ∈ EJϕτ2Kϕκ

′ (C)

We now instantiate eq. (C) with eq. (B5), j3 (note that j3 < m− j1− j2−1) σ2, σ′2, β2 (note that σ2 wL1 σ1,
σ′2 wL2 σ′1 and the conditions for the bijection hold trivially) and eq. (3), and and we obtain vc, j′3, vt, σ3,
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D3, c3, σ′3, β3, c′3 such that:
e′c[x/v′c][f/fix f(x). e′c] ⇓ vc, j′3 (C1)

e′t[x/v′t][f/fix f(x). e′t], σ2 ⇓L1 vt, σ3, D3, c3 (C2)

D3, σ
′
2, σ3, β2  σ′3, β3, c

′
3 (C3)

c′ ≤ ϕκ′ (C4)

dom(β3) \ dom(β2) ⊆ dom(σ3) \ dom(σ2) ∧ dom′(β3) \ dom′(β2) ⊆ dom(σ′3) \ dom(σ′2) (C5)

and
(vi, vc, vt, (σ3, σ

′
3, β3, m− ji)) ∈ VJϕτ2K (C6)

We can now show the goals:

1. From eq. (A1), eq. (B1) and eq. (C1) we can derive that

θc(e1 e2) ⇓ vc, j′1 + j′2 + j′3 + 1

2. From eq. (A2), eq. (B2) and eq. (C2) we can derive that

θt(pe1q pe2q), σ′i ⇓L1 vt, σ3, D1 +D2 +D3, c1 + c2 + c3 + 1

3. From eq. (A3), eq. (B3) and eq. (C3) using lemma 13 and lemma 11 we can derive that

D1 +D2 +D3, σ
′
i, σ3, β

′  σ′3, β3, c
′
1 + c′2 + c′3

4. From eq. (A4), eq. (B4) and eq. (C4) we can derive that

c′1 + c′2 + c′3 ≤ ϕ(κ1 + κ2 + κ′)

5. From eq. (A5), eq. (B5) and eq. (C5) we derive that

dom(β3) \ dom(β′) ⊆ dom(σ3) \ dom(σ′i) ∧ dom′(β3) \ dom′(β′) ⊆ dom(σ′3) \ dom(σ′c)

6. From eq. (C6) we derive that

(vi, vc, vt, (σ3, σ
′
3, β3, m− ji)) ∈ VJϕτ2K

•

∆; Φ; Γ `κ1
S e1 : (τ1

C(κ′)−−−→ τ2)C ↪→ pe1q

∆; Φ; Γ `κ2
S e2 : τ1 ↪→ pe2q C E τ2 ∆; Φ |= κ

.= κ′ +̂ κ1 +̂ κ2 +̂ costdeepref(τ2) +̂ 3

∆; Φ; Γ `κS e1 e2 : τ2 ↪→
let l = pe1q in let x = pe2q in let r = deep(!l x, τ2) in

let () = push(snd r, λ().deep′(!l x, τ2)) in fst r

app2
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By the induction hypothesis applied on the premises we get:

(θie1, θce1, θtpe1q, (σi, σc, β, m)) ∈ EJ(ϕτ1
C(ϕκ′)−−−−→ ϕτ2)CKϕκ1 (A)

(θie2, θce2, θtpe2q, (σi, σc, β, m)) ∈ EJϕτ1Kϕκ2 (B)

Let dom(β) ⊆ dom(σi) and dom′(β) ⊆ dom(σc). We pick arbitrary ji < m, vi, σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β

such that
θi(e1 e2) ⇓ vi, ji

dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi)

and
dom′(β′) \ dom′(β) ⊆ dom(σ′c) \ dom(σc)

By inversion of the evaluation relation we derive the following:

θie1 ⇓ fix f(x). e′i, j1 (1)

θie2 ⇓ v′i, j2 (2)

e′i[x/v′i][f/fix f(x). e′i] ⇓ vi, j3 (3)

ji = j1 + j2 + j3 + 1

for some e′i, v′i, j1, j2 and j3.

We instantiate eq. (A) with j1 (note that j1 < m) σ′i, σ′c, β′ (note that σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β, and all
the preconditions for the bijection hold) and eq. (1) and we obtain vc1, j′1, l, σ1, D1, c1, σ′1, β1, c′1 such that:

θce1 ⇓ vc1, j′1 (A1)

θtpe1q, σi ⇓L1 l, σ1, D1, c1 (A2)

D1, σ
′
c, σ1, β

′  σ′1, β1, c
′
1 (A3)

c′1 ≤ ϕκ1 (A4)

dom(β1) \ dom(β′) ⊆ dom(σ1) \ dom(σ′i) ∧ dom′(β1) \ dom′(β′) ⊆ dom(σ′1) \ dom(σ′c) (A5)

and
(fix f(x). e′i, vc1, l, (σ1, σ

′
1, β1, m− j1)) ∈ VJ(ϕτ1

C(ϕκ′)−−−−→ ϕτ2)CK

By unfolding the last statement we can derive that l ∈ dom(σ1), β1(l) ∈ dom(σ′1 + σ1) and

(fix f(x). e′i, σ1(l), (σ1, m− j1)) ∈ VALϕτ1
C(ϕκ′)−−−−→ ϕτ2ML1 (A6.1)
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∀ m, (vc1, σ′1 + σ1(β1(l)), (σ′1 + σ1, m)) ∈ VALϕτ1
C(ϕκ′)−−−−→ ϕτ2ML2 (A6.2)

From eq. (A6.1) we can derive that σ1(l) = fix f(x). e′t1 for some e′t1. By instantiating eq. (A6.2) with a
concrete step index we can derive that vc1 = fix f(x). e′c and σ′1 +σ1(β1(l)) = fix f(x). e′t2 for some e′c, e′t2.

We now instantiate eq. (B) with j2 (note that j2 < m) σ1, σ′1, β1 (note that σ1 wL1 σ′i, σ′1 wL2 σ′c, β1 ≥ β′),
eq. (2), and eq. (A6) and we obtain v′c, j′2, v′t, σ2, D2, c2, σ′2, β2, c′2 such that:

θce2 ⇓ v′c, j′2 (B1)

θtpe2q, σ1 ⇓L1 v′t, σ2, D2, c2 (B2)

D2, σ
′
1, β1  σ′2, β2, c

′
2 (B3)

c′2 ≤ ϕκ2 (B4)

dom(β2) \ dom(β1) ⊆ dom(σ2) \ dom(σ1) ∧ dom′(β2) \ dom′(β1) ⊆ dom(σ′2) \ dom(σ′1) (B5)

and
(v′i, v′c, v′t, (σ2, σ

′
2, β2, m− j2)) ∈ VJϕτ1K

We apply lemma 15 and lemma 16 at the last statement and we obtain

(v′i, v′t, (σ2, m− j1 − j2 − 1)) ∈ VLϕτ1ML1 (B6.1)

and
∀ m, (v′c, β2(v′t), (σ′2 + σ2, m)) ∈ VLϕτ1ML2 (B6.2)

We instantiate eq. (A6.1) with σ2 (note that σ2 wL1 σ1) and and eq. (B6.1) and we derive

(e′i[x/v′i][f/fix f(x). e′i], e′t1[x/v′t][f/fix f(x). e′t1], (σ2, m− j1 − j2 − 1)) ∈ ELϕτ2M
ϕκ′

L1
(C)

Using eq. (A6.2) and eq. (B6.2), we can also derive

∀ m, (e′c[x/v′c][f/fix f(x). e′c], e′t2[x/β2(v′t)][f/fix f(x). e′t2], (σ′2 + σ2, m)) ∈ ELϕτ2M
ϕκ′

L2
(D)

From eq. (C) using the fact that the evaluation relation in the source language is deterministic and that
j3 < m− j1 − j2 − 1 we obtain vt, σ3, c3 such that

e′t1[x/v′t][f/fix f(x). e′t1], σ2 ⇓L1 vt1, σ3, ∅, c3

and consequently, since σ2(l) = σ1(l) = fix f(x). e′t1, we obtain

!l v′t, σ2 ⇓L1 vt1, σ3, ∅, c3 + 2 (C1)
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We also obtain
c3 ≤ ϕκ′ (C2)

(vi, vt1, (σ3, m− ji)) ∈ VLϕτ2ML1 (C3)

We now instantiate lemma 18 with eq. (D) and we derive that

e′c[x/v′c][f/fix f(x). e′c] ⇓ vc, j′3 (D1)

e′t2[x/β2(v′t)][f/fix f(x). e′t2], σ′2 + σ2 ⇓L2 vt2, σ
′
3 + σ2, ∅, 0c′3

and consequently, since σ′2 + σ2(β2(l)) = σ′1 + σ1(β1(l)) = fix f(x). e′t2 (note that l ∈ dom(σ1) thus β1(l) =
β2(l)), we can derive

β2(!l) β2(v′t), σ′2 + σ2 ⇓L2 vt2, σ
′
3 + σ2, ∅, c′3 + 2 (D2)

We also derive
c′3 ≤ ϕκ′ (D3)

∀ m, (vc, vt2, (σ′3, m)) ∈ VLϕτ2ML2 (D4)

We can apply corollary 22 to eq. (C1), eq. (D2), eq. (C3), eq. (D4) (note that C E τ2) and obtain vt,
~vi = [vi1, . . . , vin], ~vc = [vc1, . . . , vcn] and ~l = [l1, . . . , ln], ~l′ = [l′1, . . . , l′n] both with all the elements pairwise
distinct and furthermore for all i ∈ [1, n], li ∈ L1, li /∈ dom(σ3), l′i ∈ L2 and l′i /∈ dom(σ′3), such that:

deep(!l v′t, τ2), σ2 ⇓L1 (v,~l), σ3[〈~l 7→ ~vi〉], ∅, c3 + 2 + costdeep(τ) (E1)

deep′(β2(!l) β2(v′t), τ2), σ′2 ⇓L2 ~l′, σ′3[〈~l′ 7→ ~vc〉], ∅, c′3 + 2 + costdeepref(τ) (E2)

(vi, vc, vt, (σ3[〈~l 7→ ~vi〉], σ′3[β2 ⊗ 〈~l′ 7→ ~vc〉], ~l 7→ ~l′, k)) ∈ VJτ2K (E3)

We can now show the goals:

1. From eq. (A1), eq. (B1) and eq. (D1) we can derive that

θc(e1 e2) ⇓ vc, j′1 + j′2 + j′3 + 1

2. From eq. (A2), eq. (B2) and eq. (E1) we can derive that

θtpeq, σ′i
⇓L1

vt, σ3, D1 +D2 + (~l, λ().deep′(l v′t, τ2)), c1 + c2 + c3 + 9 + costdeep(τ2)

3. From eq. (A3) and eq. (B3) and using lemma 11 and lemma 13 we can derive that

D1 +D2, σ
′
c, σ2, β

′  σ′2, β2, c
′
1 + c′2
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There are two possible cases

• σ′2 = ∧β2 = ∅
In this case we can derive that

(~l, λ().deep′(!l v′t, τ2)), σ′2, σ3, β2  σ′2, β2, 0

Using lemma 11 and lemma 13 on the two change propagation judgments we can derive that

D1 +D2 + (~l, λ().deep′(!l v′t, τ2)), σ′c, σ3, β
′  σ′2, β2, c

′
1 + c′2

• σ′2 6= ∅ ∨ β2 6= ∅
Using eq. (E2) we can derive that

β2(λ().deep′(!l v′t, τ2)) (), σ′2 ⇓L2 0, ~l′, σ′3[〈~l′ 7→ ~vc〉], ∅0c′3 + 3 + costdeepref(τ)

In addition, we can easily see that β2⊗ (~l 7→ ~l′) is well defined since dom(β2) ⊆ dom(σ3), dom′(β2) ⊆
dom(σ′3) and for all l ∈ ~l, l ∈ L1, l /∈ dom(σ3), l ∈ ~l′, l ∈ L2, l /∈ dom(σ′3). By the definition of change
propagation algorithm we can derive that

(~l, λ().deep′(!l v′t, τ2)), σ′2, σ3, β2  σ′3[〈~l′ 7→ ~vc〉], β2 ⊗ (~l 7→ ~l′), c′3 + 3 + costdeepref(τ2)

Using [?] and [?] on the two change propagation judgments above we can derive that

D1+D2+(~l, λ().deep′(l v′t, τ2)), σ′2, σ3, β
′  σ′3[〈~l′ 7→ ~vc〉], β2⊗(~l 7→ ~l′), c′1+c′2+c′3+3+costdeepref(τ2)

4. We should distinguish the following cases:

• σ′2 = ∅ ∧ β2 = ∅ From eq. (A4) and eq. (B4) we can derive that

c′1 + c′2 ≤ ϕκ

• σ′2 6= ∅ ∨ β2 6= ∅
From eq. (A4), eq. (B4) and eq. (D3) we can derive that

c′1 + c′2 + c′3 + 3 + costdeepref(τ2) ≤ ϕκ

5. We should distinguish the following cases:

• σ′2 = ∅ ∧ β2 = ∅
Using eq. (A5) and eq. (B5) we derive that

dom(β2) \ dom(β′) ⊆ dom(σ3) \ dom(σ′i) ∧ dom′(β2) \ dom′(β′) ⊆ dom(σ′2) \ dom(σ′c)
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• σ′2 6= ∅ ∨ β2 6= ∅ Using eq. (A5) and eq. (B5) we derive that

dom(β2 ⊗ (~l 7→ ~l′)) \ dom(β′) ⊆ dom(σ3[〈~l 7→ ~vi〉]) \ dom(σ′i) ∧ dom′(β2 ⊗ (~l 7→ ~l′)) \ dom(β′) ⊆ dom(σ′3[〈~l′ 7→ ~vc〉]) \ dom(σ′c)

6. We should again distinguish the following cases:

• σ′2 = ∅ ∧ β2 = ∅
Using the fact that evaluation is deterministic we can show that vt2 = vt1. Then, using eq. (C3),
eq. (D4) and lemma 17 we derive that

(vi, vc, vt, (σ3, σ
′
2, β2, m− ji)) ∈ VJϕτ2K

• σ′2 6= ∅ ∨ β2 6= ∅
From eq. (E3) using lemma 15 we derive that

(vi, vc, vt, (σ3[〈~l 7→ ~vi〉], σ′3[〈~l′ 7→ ~vc〉], β2 ⊗ (~l 7→ ~l′), m− ji)) ∈ VJϕτ2K

•
∆; Φ; Γ `κ′ε e : τ ↪→ peq ∀x ∈ Γ ∆; Φ ` Γ(x) v Γ(x)�� ∆; Φ |= κ

.= (ε = S ? 0 : κ′)

∆; Φ; Γ,Γ′ `κε e : τ�� ↪→ drop(conv(peq, τ, τ��))
nochange

We pick arbitrary ji < m, vi, σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β such that

θi(e1 e2) ⇓ vi, ji (1)

dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi) ∧ dom′(β′) \ dom′(β) ⊆ dom(σ′c) \ dom(σc) (2)

Using lemma 15 we can show that

(θi, θc, θt, (σ′i, σ′c, β′, m)) ∈ GJϕΓ;ϕΓ′K

By the definition of GJ·K we can derive that

(θi, θc, θt, (σ′i, σ′c, β′, m)) ∈ GJϕΓK

Using lemma 26 we obtain
(θi, θc, θt, (σ′i, ∅, ∅, m)) ∈ GJϕΓK

We instantiate the inductive hypothesis with the above and we derive

(θie, θce, θtpeq, (σ′i, ∅, ∅, m)) ∈ EJϕτKϕκ′

We instantiate the above statement with ji, vi, σ′i, ∅, ∅ and eq. (1) and we obtain vc, jc, vt, σf , D, c, σ′f ,
βf , c′ such that:

θce ⇓ vc, jc (A1)
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θtpeq, σ
′
i ⇓L1 vt, σf , D, c (A2)

D, ∅, σf , ∅ σ′f , βf , c
′ (A3)

|= c′ ≤̇ κ (A4)

dom(βf ) \ dom(∅) ⊆ dom(σf ) \ dom(σ′i) ∧ dom′(βf ) \ dom(∅) ⊆ dom(σ′f ) \ dom(σ′c) (A5)

and
(vi, vc, v′t, (σf , σ′f , βf , m− ji)) ∈ VJτK (A6)

From eq. (A3) and the definition of change propagation we can derive that σ′f = ∅, βf = ∅ and c′ = 0. We
instantiate lemma 23 with eq. (A2) and eq. (A6) and obtain v′t such that

conv(θtpeq, τ, τ��), σ′i ⇓L1 v′t, σf , D, c+ costconv(τ, τ��) (B1)

and
∀β, (vi, vc, v′t, (σf , σ′c, β, m− ji)) ∈ VJτ��K (B2)

We can now show the goals:

1. It follows immediately from eq. (A1).

2. Using eq. (B1) we can show

drop(conv(peq, τ, τ��)), σ′i ⇓L1 v′t, σf , ∅, c+ costconv(τ, τ��) + 1

3. We can easily show, using the definition of change propagation, that

∅, σ′c, σf , β′  σ′c, β
′, 0

4. It is trivially true since dom(β′) \ dom(β′) = ∅ and dom′(β′) \ dom′(β′) = ∅

5. We can instantiate eq. (B2) with β′ and obtain

(vi, vc, v′t, (σf , σ′c, β′, m− ji)) ∈ VJτ��K

•
∆; Φ; Γ, f : (τ1

δ(κ)−−→ τ2)�, x : τ1 `κδ e : τ2 ↪→ peq ∀x ∈ Γ ∆; Φ |= Γ(x) v Γ(x)��

∆; Φ; Γ,Γ′ `0
ε fix f(x). e : (τ1

δ(κ)−−→ τ2)� ↪→ fix f(x). peq
fix2

We pick arbitrary ji < m, vi, σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β such that

θi(fix f(x). e) ⇓ vi, ji

dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi)
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and
dom′(β′) \ dom′(β) ⊆ dom(σ′c) \ dom(σc)

By inversion of the evaluation relation we derive that ji = 0 and vi = θi(fix f(x). e)

The goals are proved as follows:

1. We can easily derive that
θc(fix f(x). e) ⇓ θc(fix f(x). e), 0

2. Similarly, we can show

θt(fix f(x). e), σ′i ⇓L1 θt(fix f(x). peq), σ′i, ∅, 0

3. By the definition of the change propagation algorithm we can easily obtain that:

∅, σ′c, σ′i, β′  σ′c, β
′, 0

4. It is obvious that 0 ≤ 0

5. It is trivially true since dom(β′) \ dom(β′) = ∅ and dom′(β′) \ dom′(β′) = ∅

6. Finally, we need to show

(θi(fix f(x). e), θc(fix f(x). e), θt(fix f(x). peq), (σ′i, σ′c, β′, m)) ∈ VJ(ϕτ1
ϕ(δ(κ))−−−−→ ϕτ2)�K

Or, equivalently

(θi(fix f(x). e), θc(fix f(x). e), θt(fix f(x). peq), (σ′i, ∅, ∅, m)) ∈ VAJϕτ1
ϕ(δ(κ))−−−−→ ϕτ2K

From the hypotheses we know that

(θi, θc, θt, (σi, σc, β′, m)) ∈ GJϕΓK

Using lemma 26 we obtain
(θi, θc, θt, (σi, σc, ∅, m)) ∈ GJϕΓK

We can now show the goal by case analysis on δ and induction on m. The proof is similar to the one
of fix1 rule.

•
∆; Φ; Γ `κ1

ε e1 : τ�� ↪→ pe1q ∆; Φ; Γ `κ2
ε e2 : list [n]α τ ↪→ pe2q ∆; Φ |= κ

.= κ1 +̂ κ2

∆; Φ; Γ `κε e1 :: e2 : list
[
n +̂ 1

]α
τ ↪→ inl pe1q :: pe2q

cons1

By the induction hypothesis applied on the premises we get:

(θie1, θce1, θtpe1q, (σi, σc, β, m)) ∈ EJϕτ��Kϕκ1 (A)
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(θie2, θce2, θtpe2q, (σi, σc, β, m)) ∈ EJlist [ϕn]ϕα ϕτKϕκ2 (B)

We pick arbitrary ji < m, v, σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β such that

θi(e1 :: e2) ⇓ v, ji

dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi)

and
dom′(β′) \ dom′(β) ⊆ dom(σ′c) \ dom(σc)

By inversion of the evaluation relation we derive the following:

θie1 ⇓ vi, j1 (1)

θie2 ⇓ vsi, j2 (2)

e′i[x/v′i][f/fix f(x). e′i] ⇓ vi, j3 (3)

ji = j1 + j2

v = vi :: vsi

for some vi, vsi, j1 and j2.

We instantiate eq. (A) with j1 (note that j1 < m), σ′i, σ′c, β′ (note that σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β and the
preconditions for the bijection hold), and eq. (1) and we obtain vc, j′1, vt, σ1, D1, c1, σ′1, β1, c′1 such that:

θce1 ⇓ vc, j′1 (A1)

θtpe1q, σi ⇓L1 vt, σ1, D1, c1 (A2)

D1, σ
′
c, σ1, β

′  σ′1, β1, c
′
1 (A3)

c′1 ≤ ϕκ1 (A4)

dom(β1) \ dom(β′) ⊆ dom(σ1) \ dom(σ′i) ∧ dom′(β1) \ dom′(β′) ⊆ dom(σ′1) \ dom(σ′c) (A5)

and
(vi, vc, vt, (σ1, σ

′
1, β1, m− j1)) ∈ VJϕτ��K (A6)

We now instantiate eq. (B) with j2 (note that j2 < m) σ1, σ′1, β1 (note that σ1 wL1 σ′i, σ′1 wL2 σ′c, β1 ≥ β′)
eq. (A6) and eq. (2), and we obtain vsc, j′2, vst, σ2, D2, c2, σ′2, β2, c′2 such that:

θce2 ⇓ vsc, j′2 (B1)

θtpe2q, σ1 ⇓L1 vst, σ2, D2, c2 (B2)
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D2, σ
′
1, σ2, β1  σ′2, β2, c

′
2 (B3)

c′2 ≤ ϕκ2 (B4)

dom(β2) \ dom(β1) ⊆ dom(σ2) \ dom(σ1) ∧ dom′(β2) \ dom′(β1) ⊆ dom(σ′2) \ dom(σ′1) (B5)

and
(vsi, vsc, vst, (σ2, σ

′
2, β2, m− j2)) ∈ VJlist [ϕn]ϕα ϕτK (B6)

We can now show the goals:

1. From eq. (A1) and eq. (B1) we can derive that

θc(e1 :: e2) ⇓ vc :: vsc, j′1 + j′2

2. From eq. (A2) and eq. (B2) we can derive that

θt(inl pe1q :: pe2q), σ′i ⇓L1 inl vt :: vst, σ2, D1 +D2, c1 + c2

3. From eq. (A3) and eq. (B3) using lemma 13 and lemma 11 we can derive that

D1 +D2, σ
′
i, σ2  β′, σ′2, β2c

′
1 + c′2

4. From eq. (A4), eq. (B4) we can derive that

c′1 + c′2 ≤ ϕ(κ1 + κ2)

5. From eq. (A5) and eq. (B5) we can derive that

dom(β2) \ dom(β′) ⊆ dom(σ2) \ dom(σ′i) ∧ dom′(β2) \ dom′(β′) ⊆ dom(σ′2) \ dom(σ′c)

6. We have to show that

(vi :: vsi, vc :: vsc, inl vt :: vst, (σ2, σ
′
2, β2, m− ji)) ∈ VJlist [ϕn+ 1]ϕα ϕτK

It suffices to show that
(vi, vc, vt, (σ2, σ

′
2, β2, m− ji)) ∈ VJϕτ��K

which we get by applying lemma 15 to eq. (A6), and

(vsi, vsc, vst, (σ2, σ
′
2, β2, m− ji)) ∈ VJlist [ϕn]ϕα ϕτK

which we get by applying lemma 15 to eq. (B6)
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•

∆; Φ; Γ `κeε e : list [n]α τ ↪→ peq ∆; Φ ∧ n .= 0; Γ `κ′ε e1 : τ ′ ↪→ pe1q

∆, i :: ι; Φ ∧ n .= i+ 1; Γ, h : τ��, tl : list [i]α τ `κ′ε e2 : τ ′ ↪→ pe2ql

∆, i :: ι, β :: ι; Φ ∧ n .= i+ 1 ∧ α .= β + 1; Γ, h : τ, tl : list [i]β τ `κ′ε e2 : τ ′ ↪→ pe2qr

∆; Φ |= κ
.= κe +̂ κ′ +̂ (ε = C) ? 1 : 0

∆; Φ; Γ `κε caseL e of nil → e1 | cons(h, tl) → e2 : τ ′ ↪→
caseL peq of

| nil → pe1q

| cons(s, tl) → case(s, h.pe2ql, h.pe2qr)

caseL

By the induction hypothesis applied on the first premise :

(θie, θce, θtpeq, (σi, σc, β, m)) ∈ EJlist [ϕn]ϕα ϕτKϕκe (A)

Let dom(β) ⊆ dom(σi) and dom′(β) ⊆ dom(σc). We pick arbitrary ji < m, v, σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β

such that
θi(caseL ee of nil → e1 | cons(h, tl) → e2) ⇓ vi, ji

dom(β′) \ dom(β) ⊆ dom(σ′i) \ dom(σi)

and
dom′(β′) \ dom′(β) ⊆ dom(σ′c) \ dom(σc)

We invert the evaluation relation and we have the following cases:

I case-nil

θie ⇓ [], j1 (1)

θie1 ⇓ vi, j2 (2)

ji = j1 + j2 + 1

We instantiate eq. (A) with j1 (note that j1 < m), σ′i, σ′c, β′ (note that σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β,
and the preconditions for the bijection hold), and eq. (1) and we obtain v′c, j′1, v′t, σ1, D1, c1, σ′1, β1, c′1
such that:

θce1 ⇓ v′c, j′1 (A1)

θtpe1q, σi ⇓L1 v′t, σ1, D1, c1 (A2)

D1, σ
′
c, σ1, β

′  σ′1, β1, c
′
1 (A3)

c′1 ≤ ϕκe (A4)

dom(β1) \ dom(β′) ⊆ dom(σ1) \ dom(σ′i) ∧ dom′(β1) \ dom′(β′) ⊆ dom(σ′1) \ dom(σ′c) (A5)

73



and
([], v′c, v′t, (σ1, σ

′
1, β1, m− j1)) ∈ VJlist [ϕn]ϕα ϕτK

From the last statement we derive that v′c = [], v′t = [], ϕn = 0 and ϕα = 0. Consequently, we can derive
that |= ϕ(Φ∧n .= 0). We instantiate the inductive hypothesis for the second premise with the above and
we an derive

(θie1, θce1, θtpe1q, (σi, σc, β, m)) ∈ EJϕτ ′Kϕκ1 (B)

We now instantiate eq. (B) with j2 (note that j2 < m) σ1, σ′1, β1 (note that σ1 wL1 σ′i, σ′1 wL2 σ′c),
eq. (A5), and eq. (2) and we obtain vc, j′2, vt, σ2, D2, c2, σ′2, β2, c′2 such that:

θce2 ⇓ vc, j′2 (B1)

θtpe2q, σ1 ⇓L1 vt, σ2, D2, c2 (B2)

D2, σ
′
1, σ2, β1  σ′2, β2, c

′
2 (B3)

c′2 ≤ ϕκ′ (B4)

dom(β2) \ dom(β1) ⊆ dom(σ2) \ dom(σ1) ∧ dom′(β2) \ dom′(β1) ⊆ dom(σ′2) \ dom(σ′1) (B5)

and
(vi, vc, vt, (σ2, σ

′
2, β2, m− j2)) ∈ VJϕτ ′K (B6)

We can now show the goals:

1. From eq. (A1) and eq. (B1) we can derive that

θc(caseL e of nil → e1 | cons(h, tl) → e2) ⇓ vc, j′1 + j′2 + 1

2. From eq. (A2) and eq. (B2) we can derive that

θt(caseL peq of nil → pe1q | cons(s, tl) → . . . ), σ′i
⇓L1

vt, σ2, D1 +D2, c1 + c2 + 1

3. From eq. (A3) and eq. (B3) using lemma 13 and lemma 11 we can derive that

D1 +D2, σ
′
c, σ2, β

′  σ′2, β2, c
′
1 + c′2

4. From eq. (A5) and eq. (B5) we can derive that

dom(β2) \ dom(β′) ⊆ dom(σ2) \ dom(σ′i) ∧ dom′(β2) \ dom′(β′) ⊆ dom(σ′2) \ dom(σ′c)
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5. From eq. (B6) and lemma 15 we derive that

(vi, vc, vt, (σ2, σ
′
2, β2, m− ji)) ∈ VJϕτ ′K

I case-cons

θie ⇓ v′i :: vsi, j1 (1)

θi[h 7→ v′i, tl 7→ vsi]e2 ⇓ vi, j2 (2)

ji = j1 + j2 + 1

We instantiate eq. (A) with j1 (note that j1 < m), σ′i, σ′c, β′ (note that σ′i wL1 σi, σ′c wL2 σc, β′ ≥ β,
and the preconditions for the bijection hold), and eq. (1) and we obtain v′′c , j′1, v′′t , σ1, D1, c1, σ′1, β1, c′1
such that

θce1 ⇓ v′′c , j′1 (A1)

θtpe1q, σi ⇓L1 v′′t , σ1, D1, c1 (A2)

D1, σ
′
c, σ1, β

′  σ′1, β1, c
′
1 (A3)

c′1 ≤ ϕκe (A4)

dom(β1) \ dom(β′) ⊆ dom(σ1) \ dom(σ′i) ∧ dom′(β1) \ dom′(β′) ⊆ dom(σ′1) \ dom(σ′c) (A5)

and
(vi :: vsi, v′′c , v′′t , (σ1, σ

′
1, β1, m− j1)) ∈ VJlist [ϕn]ϕα ϕτK (A6)

From the last statement we derive that ϕn = n′ + 1 for some integer n′ and v′c = v′c :: vsc for some v′c,
vsc. We have the following two cases:

? v′′t = inl v′t :: vst
From eq. (A6) we derive

(v′i, v′c, v′t, (σ1, σ
′
1, β1, m− j1)) ∈ VJϕτ��K (A7.1)

(vsi, vsc, vst, (σ1, σ
′
1, β1, m− j1)) ∈ VJlist

[
n′
]ϕα

ϕτK (A7.2)

We can also show that |= ϕ[i 7→ n′](Φ∧ n .= i+ 1). Using eq. (A7.1) and eq. (A7.2) we can show that

(θi[h 7→ v′i, tl 7→ vsi], θc[h 7→ v′c, tl 7→ vsc], θt[h 7→ v′t, tl 7→ vst], (σ1, σ
′
1, β1, m− j1))

∈ GJϕ[i 7→ n′]Γ, h : ϕ[i 7→ n′]τ��, tl : ϕ[i 7→ n′](list [i]α τ)K

We instantiate the inductive hypothesis with the above statements and using lemma 15 we derive the
following

(θie2, θce2, θtpe2ql, (σ1, σ
′
1, β1, m− j1 − 1)) ∈ EJlist

[
n′
]ϕα

ϕτKϕκ
′ (B)
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(Note that the premises force that i does not appear free in κ′) We now instantiate eq. (B) with j2
(note that j2 < m− j1 − 1) σ1, σ′1, β1 (note that σ1 wL1 σ′i, σ′1 wL2 σ′c, eq. (2), and eq. (A6) and we
obtain vc, j′2, vt, σ2, D2, c2, σ′2, β2, c′2 such that:

θc[h 7→ v′c, tl 7→ vsc]e2 ⇓ vc, j′2 (B1)

θt[h 7→ v′t, tl 7→ vst]pe2q, σ1 ⇓L1 vt, σ2, D2, c2 (B2)

D2, σ
′
1, σ2, β1  σ′2, β2, c

′
2 (B3)

c′2 ≤ ϕκ′ (B4)

dom(β2) \ dom(β1) ⊆ dom(σ2) \ dom(σ1) ∧ dom′(β2) \ dom′(β1) ⊆ dom(σ′2) \ dom(σ′1) (B5)

and
(vi, vc, vt, (σ2, σ

′
2, β2, m− j1 − j2 − 1)) ∈ VJϕτ ′K (B6)

We can now show the goals:

1. From eq. (A1) and eq. (B1) we can derive that

θc(caseL e of nil → e1 | cons(h, tl) → e2) ⇓ vc, j′1 + j′2 + 1

2. From eq. (A2) and eq. (B2) we can derive that

θt(caseL peq of nil → pe1q | cons(s, tl) → . . . ), σ′i
⇓L1

vt, σ2, D1 +D2, c1 + c2 + 2

3. From eq. (A3) and eq. (B3) using lemma 11 and lemma 13 we can derive that

D1 +D2, σ
′
i, σ2, β

′  σ′2, β2, c
′
1 + c′2

4. From eq. (A4) and eq. (B4) we can derive that

c′1 + c′2 ≤ ϕ(κe + κ′)

5. From eq. (A5) and eq. (B5) we can derive that

dom(β2) \ dom(β′) ⊆ dom(σ2) \ dom(σ′i) ∧ dom′(β2) \ dom′(β′) ⊆ dom(σ′2) \ dom(σ′c)

6. Finally, using eq. (B6) we derive that

(vi, vc, vt, (σ2, σ
′
2, β2, m− ji)) ∈ VJϕτ ′K
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? v′t = inr vt :: vst
From eq. (A6) we derive

(v′i, v′c, v′t, (σ1, σ
′
1, β1, m− j1)) ∈ VJϕτK (A7.1)

(vsi, vsc, vst, (σ1, σ
′
1, β1, m− j1)) ∈ VJlist

[
n′
]ϕ(α−1)

ϕτK (A7.2)

and
φα > 0

or equivalently
φα = m′ + 1

for some integer m′. We can also show that

|= ϕ[i 7→ n′, β 7→ m′](Φ ∧ n .= i+ 1 ∧ α .= β + 1)

The rest of the proof is now similar to the one of the previous case.
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