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Self Adjusting Computation

e An evaluation mechanism that recomputes only the parts of the
output that depend on inputs that have changed between runs

 Change propagation (CP) : the process of updating the parts of
the output that depend on changed data

e Implicit self-adjusting computation: The program responds
automatically to changes in its inputs without any manual effort
from the programmer

e Often results in asymptotic speedup
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Costlt (1)

e A type and effect system that allows us to derive upper bounds
on the cost of incremental computation
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Costlt (1)

A type and effect system that allows us to derive upper bounds
on the cost of incremental computation

e Judgments: A;&;T'Hre: 7

¢ cis the typing mode (S or C)

¢ K is the derived cost

e When € = S then « is the upper bound of CP

e When ¢ = C then « is the worst case execution cost
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Costlt (Il)

. . K
¢ Functions are annotated with effects 71 £> T

¢ When p = S then the result of the function application can be
updated with CP with cost < &

¢ When p = C then the the function application is evaluated
from-scratch with cost < k

e Types have changeability annotations 7#
s

C
O

¢ 77 : avalue that cannot change between runs

¢ 7% : avalue that can change between runs
¢ 17— : avalue that cannot change between nor capture other
changeable values
¢ Index refinement types (in the style of DML)
e Lists: list [n|” 7
¢ A vector of n elements from which at most « can change
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Running Example: map (typing)
map : (71 £, )" 30, 556t [n]* 7 852, it [n]Y

e |f £ executes from-scratch with cost £ and 1 has n elements of
which at most « can change then map f 1 propagates changes
with cost at most o - K
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Running Example: map (typing)

map : (71 £, )" 30, 556t [n]* 7 852, it [n]Y

e |f £ executes from-scratch with cost £ and 1 has n elements of
which at most « can change then map f 1 propagates changes
with cost at most o - K

¢ Intuition: we need to recompute and update in place only the
elements of the list that can change
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Soundness (this internship)

e Idea: Translate a Costlt program to a self-adjusting program
and show that the actual cost is no more that the cost derived

by the type system

evaluates to

K .
Fre:r

translates to

- evaluates in ¢ steps to
Ere: 7

ife=Cthenc<k

(a) First run

U1

Q

" evaluates to
Fse:r V1

translates to ~

CP in ¢ steps to
Ere: |7l vy
c<K

(b) Incremental run after input changes

Figure: Schematic representation of the basic properties of the translation
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Running Example: map (translation I)

C S S(k-
map : (int® N int®)- 5O, 118t [n]* intC S, 1 igt [n]* int®

¢ Re-apply the argument function only to the elements that have
changed and update the output list in-place

o Store changeable values in reference cells : || AC|| = ref ||A||

e Differentiate between stable and changeable values of a list :
|1ist [n]* int®| = list (int + ref int)

map”' : (ref int — ref int) — list (int +ref int) — list (int +ref int)
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Running Example: map (translation )

map ' : (ref int — ref int) — list (int+ref int) — list (int +ref int)

map’ fe=
caser, e of
_>
map f e = H]L::tl[}—)
caser ¢ of case h of
[l —

| by — (inl !(f (zef hy))) :: "map™ f tl
| h, — letl = ref !(f h,) in

let () =

push(l, A().!(f ) in

inr [ :: "map f tl

|h:tl — fh:map ftl
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Translation

A;O:TFre:7— e

e The translation is defined by induction on the typing derivation
e Twomodes: e =Cande =S

e The code generated in C mode will be executed from scratch
during CP
e The code generated in S mode is self-adjusting

¢ During this mode we record the computations that need to be
re-executed during CP
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Similarity Relation

Vs R Ut
e v, is the source value, v; is the target value
e o is the store in the target
e Changeable values are references in the target (stored in o)
e For stable values, v and v; should coincide

 For changeable values, v; should be a location and v, should
coincide with the value of this location in the store.

intSxintC
(3,42) ~p,5™ (3,0)
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Two-way similarity relation

(Ui7 UC) %7(—0'1', oc) Ut

e v; is the initial source value, v, is the source value after changes
e v is the target value that stores changeable values in references

e o; is the initial target store, o is the target store holding
changed values

¢ For stable values, v;, v. and v; should coincide under the two
stores

 For changeable values, v; should be similar to v; under ¢; and v,
should be similar to v; under o,

intSxintC
((3a42)7 (3743)) %[ln:4>2<], [?»—)43} (B’Z)
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Soundness, S mode

Theorem
Assume that
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Proof Method

* The soundness is proved using logical relations
e We construct two Kripke step-indexed relational models
e Two fundamental properties, one for each typing mode

¢ The soundness theorems are corollaries of the fundamental
properties of the logical relations
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Summary

e Soundness proof for Costlt w.r.t. to concrete CP semantics

¢ Older poof was w.r.t. an abstract semantics
 Designed a target language (saML) with infrastructure for CP
e Translated Costlt to saML

e Proved the correctness of the translation and the change
propagation mechanism

* Proved that the cost derived by Costlt is a sound approximation
of the actual cost (for both C and S modes)
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Future Work

¢ Devise a more efficient CP mechanism

¢ Mechanize the proof using a proof assistant

Adapt Costlt to derive the cost for demand-driven self-adjusting
computation

¢ Ongoing work: Implementation of the type system using
bidirectional type checking (E. Cicek and D. Garg)
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Thank You!

Questions?
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