Implicit self-adjusting computation for CostIt
Internship Defense

Zoe Paraskevopoulou1,2
Advisor: Deepak Garg2

1ENS Cachan 2Max Planck Institute for Software Systems

September 8, 2015
Self Adjusting Computation

- An evaluation mechanism that recomputes *only* the parts of the output that depend on inputs that have changed between runs
- *Change propagation* (CP): the process of updating the parts of the output that depend on changed data
- *Implicit self-adjusting computation*: The program responds automatically to changes in its inputs without any manual effort from the programmer
- Often results in asymptotic speedup
Change Propagation by Example

![Diagram](Image)

- The diagram represents a tree structure where each node is connected by paths of addition (+) and multiplication (∗).
- The root node is labeled 42, and it has two child nodes, one labeled 17 and the other labeled 25.
- The node 17 has child nodes labeled 8, 4, 5, and 9, while the node 25 has child nodes labeled 5, 3, and 5.
- The final result, 42, is achieved by adding the values from the child nodes of the root node.

Mathematically, the expression can be represented as:

\[42 = (17 + (8 \times 5 + 9)) + (25 \times (5 - 3 + 2)) \]
Change Propagation by Example

\[
\begin{align*}
42 &= 17 + 25 \\
17 &= 8 + 9 \\
8 &= 2 \times 4 \\
9 &= 6 + 4 \\
25 &= 5 \times 5 \\
5 &= 10 - 5 \\
10 &= 3 + 2
\end{align*}
\]
Change Propagation by Example

```
42
/ \                      /
17  25                   +
/ \ +                    +
8  10  5                 +
/ \  / \                  +
2  4  6  4               +
/ \  / \  / \              +
2* 4* 6* 4               +
```

3 / 20
Change Propagation by Example

\[
\begin{align*}
42 &= 18 + 25 \\
18 &= 8 + 10 \\
8 &= 2 \times 4 \\
10 &= 6 + 4 \\
5 &= 5 - 5 \\
5 &= 3 + 2
\end{align*}
\]
Change Propagation by Example

\[\frac{3}{20} \]

\[43 = 18 + 25 \]

\[18 = 8 + 10 \]

\[8 = 2 \times 4 \]

\[10 = 6 + 4 \]

\[6 = 2 \times 3 \]

\[4 = 10 - 5 \]

\[5 = 3 + 2 \]
• A *type and effect system* that allows us to derive upper bounds on the cost of incremental computation
Costlt (l)

- A type and effect system that allows us to derive upper bounds on the cost of incremental computation
- Judgments: $\Delta; \Phi; \Gamma \vdash^{\kappa} \epsilon : \tau$
 - ϵ is the typing mode (S or C)
 - κ is the derived cost
• A type and effect system that allows us to derive upper bounds on the cost of incremental computation

• Judgments: $\Delta; \Phi; \Gamma \vdash_{\epsilon}^\kappa e : \tau$
 - ϵ is the typing mode (S or C)
 - κ is the derived cost

• When $\epsilon = S$ then κ is the upper bound of CP
CostIt (I)

- A *type and effect system* that allows us to derive upper bounds on the cost of incremental computation.
- **Judgments:** $\Delta; \Phi; \Gamma \vdash^\kappa_\epsilon e : \tau$
 - ϵ is the typing mode (Σ or \mathbb{C}).
 - κ is the derived cost.
- When $\epsilon = \Sigma$ then κ is the upper bound of CP.
- When $\epsilon = \mathbb{C}$ then κ is the worst case execution cost.
CostIt (II)

- Functions are annotated with effects $\tau_1 \xrightarrow{\mu(\kappa)} \tau_2$

- Types have changeability annotations
 - τ_S: a value that cannot change between runs
 - τ_C: a value that can change between runs
 - $\tau\square$: a value that cannot change between nor capture other changeable values

- Index refinement types (in the style of DML)

- Lists: $\text{list}[n]^{\alpha} \tau$: A vector of n elements from which at most α can change.
CostIt (II)

- Functions are annotated with effects $\tau_1 \xrightarrow{\mu(\kappa)} \tau_2$
 - When $\mu = S$ then the result of the function application can be updated with CP with cost $\leq \kappa$

- Types have changeability annotations
 - τ_S: a value that cannot change between runs
 - τ_C: a value that can change between runs
 - τ_{\Box}: a value that cannot change between nor capture other changeable values

- Index refinement types (in the style of DML)
 - Lists: $\text{list}[n]_{\alpha}$: a vector of n elements from which at most α can change
CostIt (II)

- Functions are annotated with effects $\tau_1 \xrightarrow{\mu(\kappa)} \tau_2$
 - When $\mu = S$ then the result of the function application can be updated with CP with cost $\leq \kappa$
 - When $\mu = C$ then the function application is evaluated from-scratch with cost $\leq \kappa$
CostIt (II)

- Functions are annotated with effects $\tau_1 \xrightarrow{\mu(\kappa)} \tau_2$
 - ♦ When $\mu = S$ then the result of the function application can be updated with CP with cost $\leq \kappa$
 - ♦ When $\mu = C$ then the function application is evaluated from-scratch with cost $\leq \kappa$

- Types have changeability annotations τ^μ
 - ♦ τ^S: a value that cannot change between runs
 - ♦ τ^C: a value that can change between runs
 - ♦ τ^{\Box}: a value that cannot change between nor capture other changeable values

Index refinement types (in the style of DML)

- Lists: $\text{list}\{n\}_{\alpha}\tau$
 - A vector of n elements from which at most α can change
CostIt (II)

- Functions are annotated with effects $\tau_1 \xrightarrow{\mu(\kappa)} \tau_2$
 - When $\mu = S$ then the result of the function application can be updated with CP with cost $\leq \kappa$
 - When $\mu = C$ then the function application is evaluated from-scratch with cost $\leq \kappa$

- Types have changeability annotations τ^μ
 - τ^S: a value that cannot change between runs
 - τ^C: a value that can change between runs
 - τ^\square: a value that cannot change between nor capture other changeable values

- Index refinement types (in the style of DML)
CostLit (II)

- Functions are annotated with effects $\tau_1 \xrightarrow{\mu(\kappa)} \tau_2$
 - When $\mu = S$ then the result of the function application can be updated with CP with cost $\leq \kappa$
 - When $\mu = C$ then the function application is evaluated from-scratch with cost $\leq \kappa$

- Types have changeability annotations τ^μ
 - τ^S: a value that cannot change between runs
 - τ^C: a value that can change between runs
 - τ^\Box: a value that cannot change between nor capture other changeable values

- Index refinement types (in the style of DML)
- Lists: $\text{list}[n]^\alpha \tau$
 - A vector of n elements from which at most α can change
Running Example: map (typing)

\[
\text{map} : (\tau_1 \xrightarrow{C(\kappa)} \tau_2) \xrightarrow{\square} \text{list}[n]^\alpha \xrightarrow{S(\kappa \cdot \alpha)} \text{list}[n]^\alpha \tau_2
\]

- If \(f \) executes from-scratch with cost \(k \) and \(l \) has \(n \) elements of which at most \(\alpha \) can change then \(\text{map} f \ l \) propagates changes with cost at most \(\alpha \cdot \kappa \).
Running Example: map (typing)

\[
\text{map} : (\tau_1 \xrightarrow{C(\kappa)} \tau_2) \xrightarrow{S(0)} \text{list}[n]^{\alpha} \tau_1 \xrightarrow{S(\kappa \cdot \alpha)} \text{list}[n]^{\alpha} \tau_2
\]

- If \(f \) executes from-scratch with cost \(k \) and \(l \) has \(n \) elements of which at most \(\alpha \) can change then map \(f \) \(l \) propagates changes with cost at most \(\alpha \cdot \kappa \)
- Intuition: we need to recompute and update in place only the elements of the list that can change
Soundness (this internship)

- **Idea:** Translate a CostIt program to a self-adjusting program and show that the actual cost is no more that the cost derived by the type system

\[\vdash_{\kappa} e : \tau \quad \text{evaluates to} \quad v_1 \]

\[\vdash_{\kappa} e : \tau \quad \text{evaluates to} \quad v_1 \]

\[\vdash_{\kappa} e : \|\tau\| \quad \text{evaluates in } c \text{ steps to} \quad v_2 \]

\[\vdash_{\kappa} e : \|\tau\| \quad \text{evaluates in } c \text{ steps to} \quad v_2 \]

\[\vdash_{\kappa} e : \|\tau\| \quad \text{evaluates in } c \text{ steps to} \quad v_2 \]

\[\vdash_{\kappa} e : \|\tau\| \quad \text{evaluates in } c \text{ steps to} \quad v_2 \]

\[\vdash_{\kappa} e : \|\tau\| \quad \text{evaluates in } c \text{ steps to} \quad v_2 \]

\[\vdash_{\kappa} e : \|\tau\| \quad \text{evaluates in } c \text{ steps to} \quad v_2 \]

\[\vdash_{\kappa} e : \|\tau\| \quad \text{evaluates in } c \text{ steps to} \quad v_2 \]

Figure: Schematic representation of the basic properties of the translation.
• A simply typed lambda calculus with general references
• A simply typed lambda calculus with general references
• The runtime is modified to keep track of the computations that need to be re-executed during CP
A simply typed lambda calculus with general references

The runtime is modified to keep track of the computations that need to be re-executed during CP

- We maintain a global queue that holds closures that are pushed during the first run

- We add new primitives: push, empty

- We push tuples of the form (\vec{l}, f), where \vec{l} is the list of locations that need to be updated and f the closure that computes their new values

- During the incremental run the computations are popped and executed with a FIFO order
A simply typed lambda calculus with general references
The runtime is modified to keep track of the computations that need to be re-executed during CP

- We maintain a global queue that holds closures that are pushed during the first run
- We add new primitives: push, empty
• A simply typed lambda calculus with general references
• The runtime is modified to keep track of the computations that need to be re-executed during CP
 ♦ We maintain a global queue that holds closures that are pushed during the first run
 ♦ We add new primitives: push, empty
 ♦ We push tuples of the form \((\vec{l}, f)\), where \(\vec{l}\) is the list of locations that need to be updated and \(f\) the closure that computes their new values
• A simply typed lambda calculus with general references
• The runtime is modified to keep track of the computations that need to be re-executed during CP
 ♦ We maintain a global queue that holds closures that are pushed during the first run
 ♦ We add new primitives: push, empty
 ♦ We push tuples of the form (\vec{l}, f), where \vec{l} is the list of locations that need to be updated and f the closure that computes their new values
 ♦ During the incremental run the computations are popped and executed with a FIFO order
A simply typed lambda calculus with general references

The runtime is modified to keep track of the computations that need to be re-executed during CP

- We maintain a global queue that holds closures that are pushed during the first run
- We add new primitives: push, empty
- We push tuples of the form \((\vec{l}, f)\), where \(\vec{l}\) is the list of locations that need to be updated and \(f\) the closure that computes their new values
- During the incremental run the computations are popped and executed with a FIFO order
Running Example: map (translation I)

\[
\text{map} : (\text{int}_C \xrightarrow{\text{C}(\kappa)} \text{int}_C) \xrightarrow{\text{S}(0)} \text{list}[n]^\alpha \text{int}_C \xrightarrow{\text{S}(\kappa \cdot \alpha)} \text{list}[n]^\alpha \text{int}_C
\]

- Re-apply the argument function only to the elements that have changed and update the output list in-place
Running Example: \(\text{map} \) (translation I)

\[
\text{map} : (\text{int}^{\mathbb{C}} \xrightarrow{C(\kappa)} \text{int}^{\mathbb{C}}) \square \xrightarrow{S(0)} \text{list}[^n\alpha]^{\text{int}}^{\mathbb{C}} \xrightarrow{S(\kappa \cdot \alpha)} \text{list}[^n\alpha]^{\text{int}}^{\mathbb{C}}
\]

- Re-apply the argument function only to the elements that have changed and update the output list in-place
- Store changeable values in reference cells: \(\| A^{\mathbb{C}} \| = \text{ref} \| A \| \)
Running Example: \texttt{map} (translation I)

\texttt{map} : \left(\text{int}^\text{C} \xrightarrow{\text{C(}\kappa\text{)}} \text{int}^\text{C} \right) \square \xrightarrow{S(0)} \text{list}[^n\alpha\text{int}^\text{C}} \xrightarrow{S(\kappa\cdot\alpha)} \text{list}[^n\alpha\text{int}^\text{C}}

- Re-apply the argument function only to the elements that have changed and update the output list in-place
- Store changeable values in reference cells: \(\| A^\text{C} \| = \text{ref} \| A \| \)
- Differentiate between stable and changeable values of a list:
 \(\| \text{list}[^n\alpha\text{int}^\text{C}} \| = \text{list (int + ref int)} \)
Running Example: map (translation I)

\[\text{map} : (\text{int}^C \xrightarrow{\kappa} \text{int}^C) \xrightarrow{\Box} \text{list}^\alpha \text{int}^C \xrightarrow{\kappa \cdot \alpha} \text{list}^\alpha \text{int}^C \]

- Re-apply the argument function only to the elements that have changed and update the output list in-place
- Store changeable values in reference cells: \(|A^C| = \text{ref} \ |A|\)
- Differentiate between stable and changeable values of a list:
 \(|\text{list}^\alpha \text{int}^C| = \text{list}(\text{int} + \text{ref int})|

\[\text{map}^{-1} : (\text{ref int} \rightarrow \text{ref int}) \rightarrow \text{list}(\text{int} + \text{ref int}) \rightarrow \text{list}(\text{int} + \text{ref int}) \]
Running Example: \(\text{map} \) (translation II)

\[
\text{case}_{L} e \of
\begin{align*}
\| \emptyset & \rightarrow \emptyset \\
| h :: tl & \rightarrow f h :: \text{map} f tl
\end{align*}
\]
Running Example: map (translation II)

\[\text{map}^\downarrow: (\text{ref int} \rightarrow \text{ref int}) \rightarrow \text{list (int + ref int)} \rightarrow \text{list (int + ref int)}\]

\[
\text{map}^\downarrow f e = \\
\quad \text{caseL } e \text{ of} \\
\quad \quad | [] \rightarrow [] \\
\quad \quad | h :: tl \rightarrow f h :: \text{map} f tl
\]
Running Example: \(\text{map} \) (translation II)

\[
\text{map}:: (\text{ref int} \rightarrow \text{ref int}) \rightarrow \text{list} (\text{int} + \text{ref int}) \rightarrow \text{list} (\text{int} + \text{ref int})
\]

\[
\text{map} f e = \\
\quad \text{caseL} e \text{ of} \\
\quad \mid [] \rightarrow [] \\
\quad \mid h :: tl \rightarrow f h :: \text{map} f tl
\]
Running Example: \(\text{map}\) (translation II)

\[\begin{align*}
\text{map}^{-1} & : (\text{ref int} \to \text{ref int}) \to \text{list} (\text{int} + \text{ref int}) \to \text{list} (\text{int} + \text{ref int}) \\
\text{map} f e & = \\
\quad \text{case} L e \text{ of} \\
\quad \quad | [] \to [] \\
\quad \quad | h :: tl \to f h :: \text{map} f tl \\
\end{align*}\]
Running Example: \(\text{map} \) (translation II)

\[
\text{\textbackslash{\text{map}}} : (\text{ref int} \rightarrow \text{ref int} \rightarrow \text{list (int + ref int)} \rightarrow \text{list (int + ref int)}

\[
\text{map} f e =
\begin{align*}
\text{caseL } e \text{ of} \\
& \text{[]} \rightarrow \text{[]} \\
& h :: tl \rightarrow \text{case } h \text{ of} \\
& \quad h \text{ } \text{ } \rightarrow (\text{inl } ! (f \text{ } \text{ref } h)) :: \text{\textbackslash{\text{map}}} f tl \\
& \quad h_r \rightarrow \text{let } l = \text{ref } ! (f h_r) \text{ in}
\end{align*}
\]
Running Example: map (translation II)

\[
\text{map}^\downarrow : (\text{ref int} \to \text{ref int}) \to \text{list} (\text{int} + \text{ref int}) \to \text{list} (\text{int} + \text{ref int})
\]

\[
\text{map}^\downarrow f e = \\
\begin{align*}
\text{case} \ L e \ of \\
\mid [] & \to [] \\
\mid h :: tl & \to \\
& \text{case} h \ of \\
& \mid h_l & \to (\text{inl} !(f (\text{ref} h_l))) :: \text{map}^\downarrow f tl \\
& \mid h_r & \to \text{let} \ l = \text{ref} !(f \ h_r) \ \text{in} \\
& \quad \text{let} \ () = \\
& \quad \text{push}(l, \lambda().! (f h_r)) \ \text{in}
\end{align*}
\]
Running Example: \(\text{map} \) (translation II)

\[
\text{map} : (\text{ref int} \rightarrow \text{ref int}) \rightarrow \text{list (int + ref int)} \rightarrow \text{list (int + ref int)}
\]

\[
\text{map} f e = \\
\text{case} _ e \text{ of} \\
| [] \rightarrow [] \\
| h :: tl \rightarrow \\
\text{case} h \text{ of} \\
| h_l \rightarrow (\text{inl }!(f (\text{ref } h_l))) : \text{map} f tl \\
| h_r \rightarrow \text{let } l = \text{ref }!(f h_r) \text{ in} \\
\text{let } () = \\
\text{push}(l, \lambda . !)(f h_r) \text{ in} \\
\text{inr } l : \text{map} f tl
\]
The translation is defined by induction on the typing derivation

Two modes: \(\epsilon = C \) and \(\epsilon = S \)

The code generated in \(C \) mode will be executed from scratch during CP

The code generated in \(S \) mode is self-adjusting

During this mode we record the computations that need to be re-executed during CP

\[\Delta; \Phi; \Gamma \vdash^\kappa \epsilon : \tau \rightarrow \sqcap e \]
Translation

\[\Delta; \Phi; \Gamma \vdash^\kappa_e \ e : \tau \hookrightarrow \ l e \]

- The translation is defined by induction on the typing derivation
Translation

\[\Delta; \Phi; \Gamma \vdash_{\epsilon}^\kappa e : \tau \hookrightarrow \lceil e \rceil \]

- The translation is defined by induction on the typing derivation
- Two modes: \(\epsilon = C \) and \(\epsilon = S \)
The translation is defined by induction on the typing derivation

Two modes: $\epsilon = C$ and $\epsilon = S$

The code generated in C mode will be executed from scratch during CP
The translation is defined by induction on the typing derivation.

Two modes: $\epsilon = C$ and $\epsilon = S$

The code generated in C mode will be executed from scratch during CP.

The code generated in S mode is self-adjusting.

During this mode we record the computations that need to be re-executed during CP.
Change Propagation

\[Q, \sigma_i[\sigma_c] \sim \sigma_f, c \]
Change Propagation

\[Q, \sigma_i[\sigma_c] \rightsquigarrow \sigma_f, c \]

- \(Q \) is the queue holding the recorded computations
Change Propagation

\[Q, \sigma_i[\sigma_c] \leadsto \sigma_f, c \]

- \(Q \) is the queue holding the recorded computations
- While \(Q \) is not empty, the algorithm:
Change Propagation

\[Q, \sigma_i[\sigma_c] \rightsquigarrow \sigma_f, c \]

- \(Q \) is the queue holding the recorded computations
- While \(Q \) is not empty, the algorithm:
 - pops an element \((\vec{l}, f)\) from the queue
Change Propagation

\[Q, \sigma_i[\sigma_c] \rightsquigarrow \sigma_f, c \]

- \(Q \) is the queue holding the recorded computations
- While \(Q \) is not empty, the algorithm:
 - \(\Diamond \) pops an element \((\vec{l}, f)\) from the queue
 - \(\Diamond \) runs the computation \(f() \) that returns the updated values of the locations and incurs cost \(c_f \)
 - \(\Diamond \) updates the locations with their new values and the total cost to \(c \leftarrow c_f + c \)
Change Propagation

\[Q, \sigma_i[\sigma_c] \rightsquigarrow \sigma_f, c \]

- \(Q \) is the queue holding the recorded computations
- While \(Q \) is not empty, the algorithm:
 - pops an element \((l, f)\) from the queue
 - runs the computation \(f() \) that returns the updated values of the locations and incurs cost \(c_f \)
 - updates the locations with their new values and the total cost to \(c \leftarrow c_f + c \)
Similarity Relation

- \(v_s \) is the source value, \(v_t \) is the target value
- \(\sigma \) is the store in the target
- Changeable values are references in the target (stored in \(\sigma \))
- For stable values, \(v_s \) and \(v_t \) should coincide
- For changeable values, \(v_t \) should be a location and \(v_s \) should coincide with the value of this location in the store.

\[
(3, 42) \approx_{\int}^{\sigma} (3, l)
\]
Soundness, C mode

Theorem

Assume that

\[\vdash^\kappa_C e : \tau \rightarrow \langle e \rangle \]

Then there exist \(v'_s, v'_t, \sigma', j \) and \(c \), such that
Theorem

Assume that

$$\vdash^\kappa_C e : \tau \rightarrow \llbracket e \rrbracket$$

Then there exist v'_{s}, v'_t, σ', j and c, such that

1. $e \Downarrow v'_s$, j
Soundness, \mathbb{C} mode

Theorem

Assume that

$$
\vdash_\mathbb{C}^\kappa e : \tau \rightarrow \llbracket e \rrbracket
$$

Then there exist v'_s, v'_t, σ', j and c, such that

1. $e \Downarrow v'_s$, j
2. $\llbracket e \rrbracket$, $\sigma \Downarrow v'_t$, σ', \emptyset, c
Soundness, \mathbb{C} mode

Theorem

Assume that

$$\vdash^\kappa_{\mathbb{C}} e : \tau \rightarrow \lceil e \rceil$$

Then there exist v'_s, v'_t, σ', j and c, such that

1. $e \downarrow v'_s$, j
2. $\lceil e \rceil$, $\sigma \downarrow v'_t$, σ', \emptyset, c
3. $\models c \leq \kappa$
Theorem

Assume that

$$\vdash_{C}^{\kappa} e : \tau \rightarrow \lceil e \rceil$$

Then there exist $v_{s}', v_{t}', \sigma', j$ and c, such that

1. $e \Downarrow v_{s}', j$
2. $\lceil e \rceil, \sigma \Downarrow v_{t}', \sigma', \emptyset, c$
3. $\models c \leq \kappa$
4. $v_{s}' \approx_{\sigma}, v_{t}'$
Two-way similarity relation

$$(v_i, v_c) \approx_{(\sigma_i, \sigma_c)}^T v_t$$

- v_i is the initial source value, v_c is the source value after changes
- v_t is the target value that stores changeable values in references
- σ_i is the initial target store, σ_c is the target store holding changed values
- For stable values, v_i, v_c and v_t should coincide under the two stores
- For changeable values, v_i should be similar to v_t under σ_i and v_c should be similar to v_t under σ_c

$$\left((3, 42), (3, 43) \right) \approx_{\text{int}^S \times \text{int}^C}^{[l \mapsto 42], [l \mapsto 43]} (3, l)$$
Soundness, S mode

Theorem

Assume that

\[\cdots; x: \tau' \vdash^\kappa e : \tau \hookrightarrow \Gamma e \downarrow \]

\[(v_i, v_c) \approx_{(\sigma_i, \sigma_c)} v_t \]

Then if $[x \mapsto v_i]e \downarrow v'_i$, \(j\) then there exist v'_c, v'_t, σ_f, σ'_f, Q, j and c, such that
Soundness, \mathcal{S} mode

Theorem

Assume that

\[\vdash_{\mathcal{S}^\kappa} e : \tau \quad \tau \to \overline{e} \]

\[(v_i, v_c) \approx^\tau (\sigma_i, \sigma_c) v_t \]

Then if \([x \mapsto v_i]e \Downarrow v'_i, j\) then there exist \(v'_c, v'_t, \sigma_f, \sigma'_f, Q, j\) and \(c\), such that

1. \([x \mapsto v_c]e \Downarrow v'_c, j'\)

Soundness, \mathcal{S} mode

Theorem

Assume that

$$\vdash^\kappa_{\mathcal{S}} \cdot; \cdot; x : \tau' \vdash^\kappa e : \tau \hookrightarrow \Gamma e \ \neg

(v_i, v_c) \approx^\tau'_{\sigma_i, \sigma_c} v_t$$

Then if $[x \mapsto v_i] e \Downarrow v'_i, j$ then there exist $v'_c, v'_t, \sigma_f, \sigma'_f, Q, j$ and c, such that

(1) $[x \mapsto v_c] e \Downarrow v'_c, j'$

(2) $[x \mapsto v_t] \Gamma e \neg, \sigma_i \Downarrow v'_t, \sigma_f, Q, c$
Soundness, \mathcal{S} mode

Theorem

Assume that
\[
\vdash_{\mathcal{S}} \exists x : \tau' \vdash_{\mathcal{S}} e : \tau \hookrightarrow e \Downarrow
\]
\[(v_i, v_c) \approx_{(\sigma_i, \sigma_c)} v_t\]

Then if $[x \mapsto v_i]e \Downarrow v_i', j$ then there exist $v_c', v_t', \sigma_f, \sigma_f', Q, j$ and c, such that

1. $[x \mapsto v_c]e \Downarrow v_c', j'$
2. $[x \mapsto v_t]e \Downarrow, \sigma_i \Downarrow v_t', \sigma_f, Q, c$
3. $Q, \sigma_f[\sigma_c] \leadsto \sigma'_f, c'$
Soundness, \mathbb{S} mode

Theorem

Assume that

$\cdot; \cdot; x : \tau' \vdash^\kappa_{\mathbb{S}} e : \tau \hookrightarrow \llbracket e \rrbracket$

$(v_i, v_c) \approx^r_{(\sigma_i, \sigma_c)} v_t$

Then if $[x \mapsto v_i] e \Downarrow v_i', j$ then there exist $v_c', v_t', \sigma_f, \sigma'_f, Q, j$ and c, such that

1. $[x \mapsto v_c] e \Downarrow v_c', j'$
2. $[x \mapsto v_t]\llbracket e \rrbracket, \sigma_i \Downarrow v_t', \sigma_f, Q, c$
3. $Q, \sigma_f[\sigma_c] \leadsto \sigma'_f, c'$
4. $\models c' \leq \kappa$
Soundness, \mathcal{S} mode

Theorem

Assume that

$$\cdot; \cdot; x : \tau' \vdash^\kappa_{\mathcal{S}} e : \tau \leftarrow \ulcorner e \urcorner$$

$$(v_i, v_c) \approx_{(\sigma_i, \sigma_c)}^\tau v_t$$

Then if $[x \mapsto v_i]e \Downarrow v'_i$, j then there exist v'_c, v'_t, σ_f, σ'_f, Q, j and c, such that

1. $[x \mapsto v_c]e \Downarrow v'_c$, j'
2. $[x \mapsto v_t]\ulcorner e \urcorner, \sigma_i \Downarrow v'_t, \sigma_f, Q, c$
3. $Q, \sigma_f[\sigma_c] \leadsto \sigma'_f, c'$
4. $\models c' \leq \kappa$
5. $(v'_i, v'_c) \approx_{(\sigma_f, \sigma'_f)} v'_t$
Proof Method

- The soundness is proved using logical relations
- We construct two Kripke step-indexed relational models
- Two fundamental properties, one for each typing mode
- The soundness theorems are corollaries of the fundamental properties of the logical relations
Summary

• Soundness proof for CostIt w.r.t. to concrete CP semantics
 ♦ Older proof was w.r.t. an abstract semantics
• Designed a target language (saML) with infrastructure for CP
• Translated CostIt to saML
• Proved the correctness of the translation and the change propagation mechanism
• Proved that the cost derived by CostIt is a sound approximation of the actual cost (for both C and S modes)
Future Work

- Devise a more efficient CP mechanism
- Mechanize the proof using a proof assistant
- Adapt CostIt to derive the cost for demand-driven self-adjusting computation
- Ongoing work: Implementation of the type system using bidirectional type checking (E. Çiçek and D. Garg)
Thank You!

Questions?