Implicit self-adjusting computation for Costlt

Internship Defense

Zoe Paraskevopoulou'?
Advisor: Deepak Garg?

'ENS Cachan 2Max Planck Institute for Software Systems

September 8, 2015

1/20

Self Adjusting Computation

e An evaluation mechanism that recomputes only the parts of the
output that depend on inputs that have changed between runs

 Change propagation (CP) : the process of updating the parts of
the output that depend on changed data

e Implicit self-adjusting computation: The program responds
automatically to changes in its inputs without any manual effort
from the programmer

e Often results in asymptotic speedup

2/20

Change Propagation by Example

42
/+\
17 25
VRN VAR
8 9 5 5
/ A\ / A\ / A\ / N\

3/20

Change Propagation by Example

42
/+\
17 25
VRN VAR
8 9 5 5
/ A\ / N\ / A\ / N\

3/20

Change Propagation by Example

42
/+\
17 25
VRN VAR
8 10 5 5
/ N\ / N\ / \ / N\

3/20

Change Propagation by Example

42
/+\
18 25
VRN VAR
8 10 5 5
/ N\ / N\ / \ / N\

3/20

Change Propagation by Example

43
/+\
18 25
VRN VAR
8 10 5 5
/ N\ / N\ / \ / N\

3/20

Costlt (1)

e A type and effect system that allows us to derive upper bounds
on the cost of incremental computation

4/20

Costlt (1)

e A type and effect system that allows us to derive upper bounds
on the cost of incremental computation
e Judgments: A;&;T'Hre: 7
¢ cis the typing mode (S or C)
¢ K is the derived cost

4/20

Costlt (1)

e A type and effect system that allows us to derive upper bounds
on the cost of incremental computation
e Judgments: A;&;T'Hre: 7
¢ cis the typing mode (S or C)
¢ K is the derived cost

e When € = S then « is the upper bound of CP

4/20

Costlt (1)

A type and effect system that allows us to derive upper bounds
on the cost of incremental computation

e Judgments: A;&;T'Hre: 7

¢ cis the typing mode (S or C)

¢ K is the derived cost

e When € = S then « is the upper bound of CP

e When ¢ = C then « is the worst case execution cost

4/20

Costlt (Il)

. K
¢ Functions are annotated with effects 71 M T

5/20

Costlt (Il)

. . K
¢ Functions are annotated with effects 71 & T

¢ When p = S then the result of the function application can be
updated with CP with cost < &

5/20

Costlt (Il)

. . K
¢ Functions are annotated with effects 71 £> T

¢ When p = S then the result of the function application can be
updated with CP with cost < &

¢ When p = C then the the function application is evaluated
from-scratch with cost < k

5/20

Costlt (Il)

. . K
¢ Functions are annotated with effects 71 £> T

¢ When p = S then the result of the function application can be

updated with CP with cost < &
¢ When p = C then the the function application is evaluated
from-scratch with cost < k

e Types have changeability annotations 7#
+ 75 : a value that cannot change between runs
¢ 7€ : a value that can change between runs
+ 75 : a value that cannot change between nor capture other
changeable values

5/20

Costlt (Il)

. . K
¢ Functions are annotated with effects 71 £> T

¢ When p = S then the result of the function application can be

updated with CP with cost < &
¢ When p = C then the the function application is evaluated
from-scratch with cost < k

e Types have changeability annotations 7#

+ 75 : a value that cannot change between runs

¢ 7€ : a value that can change between runs

+ 75 : a value that cannot change between nor capture other
changeable values

¢ Index refinement types (in the style of DML)

5/20

Costlt (Il)

. . K
¢ Functions are annotated with effects 71 £> T

¢ When p = S then the result of the function application can be
updated with CP with cost < &

¢ When p = C then the the function application is evaluated
from-scratch with cost < k

e Types have changeability annotations 7#
s

C
O

¢ 77 : avalue that cannot change between runs

¢ 7% : avalue that can change between runs
¢ 17— : avalue that cannot change between nor capture other
changeable values
¢ Index refinement types (in the style of DML)
e Lists: list [n|” 7
¢ A vector of n elements from which at most « can change

5/20

Running Example: map (typing)
map : (71 £,)" 30, 556t [n]* 7 852, it [n]Y

e |f £ executes from-scratch with cost £ and 1 has n elements of
which at most « can change then map f 1 propagates changes
with cost at most o - K

6/20

Running Example: map (typing)

map : (71 £,)" 30, 556t [n]* 7 852, it [n]Y

e |f £ executes from-scratch with cost £ and 1 has n elements of
which at most « can change then map f 1 propagates changes
with cost at most o - K

¢ Intuition: we need to recompute and update in place only the
elements of the list that can change

6/20

Soundness (this internship)

e Idea: Translate a Costlt program to a self-adjusting program
and show that the actual cost is no more that the cost derived

by the type system

evaluates to

K .
Fre:r

translates to

- evaluates in ¢ steps to
Ere: 7

ife=Cthenc<k

(a) First run

U1

Q

" evaluates to
Fse:r V1

translates to ~

CP in ¢ steps to
Ere: |7l vy
c<K

(b) Incremental run after input changes

Figure: Schematic representation of the basic properties of the translation

7/20

Target Language: saML

e A simply typed lambda calculus with general references

8/20

Target Language: saML

e A simply typed lambda calculus with general references

e The runtime is modified to keep track of the computations that
need to be re-executed during CP

8/20

Target Language: saML

e A simply typed lambda calculus with general references

e The runtime is modified to keep track of the computations that
need to be re-executed during CP

¢ We maintain a global queue that holds closures that are pushed
during the first run

8/20

Target Language: saML

e A simply typed lambda calculus with general references

e The runtime is modified to keep track of the computations that
need to be re-executed during CP
¢ We maintain a global queue that holds closures that are pushed
during the first run
¢ We add new primitives: push, empty

8/20

Target Language: saML

e A simply typed lambda calculus with general references

e The runtime is modified to keep track of the computations that
need to be re-executed during CP

¢ We maintain a global queue that holds closures that are pushed
during the first run

¢ We add new primitives: push, empty

¢ We push tuples of the form (l_: f), where ['is the list of locations
that need to be updated and f the closure that computes their
new values

8/20

Target Language: saML

e A simply typed lambda calculus with general references

e The runtime is modified to keep track of the computations that
need to be re-executed during CP

¢ We maintain a global queue that holds closures that are pushed
during the first run

¢ We add new primitives: push, empty

¢ We push tuples of the form (l_: f), where ['is the list of locations
that need to be updated and f the closure that computes their
new values

¢ During the incremental run the computations are popped and
executed with a FIFO order

8/20

Target Language: saML

e A simply typed lambda calculus with general references

e The runtime is modified to keep track of the computations that
need to be re-executed during CP

¢ We maintain a global queue that holds closures that are pushed
during the first run

¢ We add new primitives: push, empty

¢ We push tuples of the form (l_: f), where ['is the list of locations
that need to be updated and f the closure that computes their
new values

¢ During the incremental run the computations are popped and
executed with a FIFO order

8/20

Running Example: map (translation I)

C(w), . tC)D 5(0) (k) Y

map : (int® = in 7 1list [n]* int® Swe), st [n]* int®

¢ Re-apply the argument function only to the elements that have
changed and update the output list in-place

9/20

Running Example: map (translation I)

C(w), . tC)D 5(0) (k) a ;4 C

map : (int® = in 7 1list [n]* int® Swe), st [n]

¢ Re-apply the argument function only to the elements that have
changed and update the output list in-place

o Store changeable values in reference cells : || AC|| = ref ||A||

9/20

Running Example: map (translation I)

C(r) S(0) (k) a

S(x-
map : (int® N int®)Y =% 1ist [n]* int® =22 1ist [n]* int®

¢ Re-apply the argument function only to the elements that have
changed and update the output list in-place

o Store changeable values in reference cells : || AC|| = ref ||A||

e Differentiate between stable and changeable values of a list :
|1ist [n]* int®| = list (int + ref int)

9/20

Running Example: map (translation I)

C S S(k-
map : (int® N int®)- 5O, 118t [n]* intC S, 1 igt [n]* int®

¢ Re-apply the argument function only to the elements that have
changed and update the output list in-place

o Store changeable values in reference cells : || AC|| = ref ||A||

e Differentiate between stable and changeable values of a list :
|1ist [n]* int®| = list (int + ref int)

map”' : (ref int — ref int) — list (int +ref int) — list (int +ref int)

9/20

Running Example: map (translation)

map ' : (ref int — ref int) — list (int+ref int) — list (int +ref int)

map’ fe=
caser, e of
_>
caser, e of .
[l —

|h:tl — fh:map ftl

10/20

Running Example: map (translation)

map ' : (ref int — ref int) — list (int+ref int) — list (int +ref int)

map’ fe=
caser, e of
_>
— 050,
caser, e of .
[l —

|h:tl — fh:map ftl

10/20

Running Example: map (translation)

map ' : (ref int — ref int) — list (int+ref int) — list (int +ref int)

map’ fe=

caser, e of
_ [= [

map f e = | ho:tl —

caser, e of

7= [case h of
. . | i —
|h:tl — fh:map ftl by —

10/20

Running Example: map (translation)

map ' : (ref int — ref int) — list (int+ref int) — list (int +ref int)

map’ fe=
caser, e of
_ [= [
map fe= | bt —
caser, e of
m = 0 case h of
- - | by — (inl !(f (zef hy))) :: "map™ f tl
|h:tl — fh:map ftl by —

10/20

Running Example: map (translation)

map ' : (ref int — ref int) — list (int+ref int) — list (int +ref int)

map’ fe=
caser, e of
_>
map f e = H]L::tl[}—)
caser e of case h of
] =

| by — (inl !(f (zef hy))) :: "map™ f tl

|h:tl — fh:map ftl | hy — letl = ref I(f hy) in

10/20

Running Example: map (translation)

map ' : (ref int — ref int) — list (int+ref int) — list (int +ref int)

map’ fe=
caser, e of
_>
map f e = H]L::tl[}—)
caser ¢ of case h of
[l —

| by — (inl !(f (zef hy))) :: "map™ f tl
| h, — letl = ref !(f h,) in
let () =
push(l, X\().!(f hy)) in

|h:tl — fh:map ftl

10/20

Running Example: map (translation)

map ' : (ref int — ref int) — list (int+ref int) — list (int +ref int)

map’ fe=
caser, e of
_>
map f e = H]L::tl[}—)
caser ¢ of case h of
[l —

| by — (inl !(f (zef hy))) :: "map™ f tl
| h, — letl = ref !(f h,) in

let () =

push(l, A().!(f) in

inr [:: "map f tl

|h:tl — fh:map ftl

10/20

Translation

A;O:T e e

11/20

Translation

A;O:TFre:7— e

e The translation is defined by induction on the typing derivation

11/20

Translation

A;O:TFre:7— e

e The translation is defined by induction on the typing derivation

e Twomodes: e =Cande =S

11/20

Translation

A;O:TFre:7— e

e The translation is defined by induction on the typing derivation
e Twomodes: e =Cande =S

e The code generated in C mode will be executed from scratch
during CP

11/20

Translation

A;O:TFre:7— e

e The translation is defined by induction on the typing derivation
e Twomodes: e =Cande =S

e The code generated in C mode will be executed from scratch
during CP
e The code generated in S mode is self-adjusting

¢ During this mode we record the computations that need to be
re-executed during CP

11/20

Change Propagation

Q, ailoc] ~ oy, ¢

12/20

Change Propagation

Q, giloc] ~ oy, ¢

e () is the queue holding the recorded computations

12/20

Change Propagation

Q, oiloc] ~ oy, c

e () is the queue holding the recorded computations
e While @) is not empty, the algorithm:

12/20

Change Propagation

Q, oiloc] ~ oy, c

e () is the queue holding the recorded computations
e While @) is not empty, the algorithm:

¢ pops an element (l_: f) from the queue

12/20

Change Propagation

Q, oiloc] ~ oy, c

e () is the queue holding the recorded computations
e While @) is not empty, the algorithm:

¢ pops an element (l_: f) from the queue

¢ runs the computation f () that returns the updated values of the
locations and incurs cost ¢y

¢ updates the locations with their new values and the total cost to
cécy+c

12/20

Change Propagation

Q, oiloc] ~ oy, c

e () is the queue holding the recorded computations
e While @) is not empty, the algorithm:

¢ pops an element (l_: f) from the queue

¢ runs the computation f () that returns the updated values of the
locations and incurs cost ¢y

¢ updates the locations with their new values and the total cost to
cécy+c

12/20

Similarity Relation

Vs R Ut
e v, is the source value, v; is the target value
e o is the store in the target
e Changeable values are references in the target (stored in o)
e For stable values, v and v; should coincide

 For changeable values, v; should be a location and v, should
coincide with the value of this location in the store.

intSxintC
(3,42) ~p,5™ (3,0)

13/20

Soundness, C mode

Theorem

Assume that
Fee:T— el

Then there exist v, v;, o', j and ¢, such that

14/20

Soundness, C mode

Theorem

Assume that
Fee:T— el

Then there exist v, v;, o', j and ¢, such that

() edog, j

14/20

Soundness, C mode

Theorem

Assume that
Fee:T— el

Then there exist v, v;, o', j and ¢, such that

() edog, j

@ e, ol o, @, c

14/20

Soundness, C mode

Theorem

Assume that
Fee:T— el

Then there exist v, v;, o', j and ¢, such that

() edog, j

@ e, ol o, @, c

@) e

14/20

Soundness, C mode

Theorem

Assume that
Fee:T— el

Then there exist v, v;, o', j and ¢, such that
() ed v, j

@ e, ol o, @, c

®) Eein

(4) vs X5 v

14/20

Two-way similarity relation

(Ui7 UC) %7(—0'1', oc) Ut

e v; is the initial source value, v, is the source value after changes
e v is the target value that stores changeable values in references

e o; is the initial target store, o is the target store holding
changed values

¢ For stable values, v;, v. and v; should coincide under the two
stores

 For changeable values, v; should be similar to v; under ¢; and v,
should be similar to v; under o,

intSxintC
((3a42)7 (3743)) %[ln:4>2<], [?»—)43} (B’Z)

15/20

Soundness, S mode

Theorem
Assume that
-;-;x:7'|—§e:7<—>'—e—'
!
(Ui7 Uc) %7(—0-14’ Uc) Ut
Then if [z +— wvile |} vj, j then there exist v, vy, oy, 0, @, j and ¢,
such that

16/20

Soundness, S mode

Theorem

Assume that
-;-;x:7'|—§e:7<—>'—e—'
!
i
(Ui, Uc) ~los, o0) Ut

Then if [z +— wvile |} vj, j then there exist v, vy, oy, 0, @, j and ¢,
such that

(1) [z vele d g, §

16/20

Soundness, S mode

Theorem

Assume that
sux:iT Fe:T = el
!
i
(Vir Ve) Mg, o) Ut

Then if [z +— wvile |} vj, j then there exist v, vy, oy, 0, @, j and ¢,
such that

() [z = vele 4 vg, §'
(2) [IL’ = vt]re—la oF) ‘U’ U7/57 Ufa Q; c

16/20

Soundness, S mode

Theorem

Assume that
sux:iT Fe:T = el
!
i
(Vir Ve) Mg, o) Ut

Then if [z +— wvile |} vj, j then there exist v, vy, oy, 0, @, j and ¢,
such that

(1) [z~ vle v, j'
(2) [‘T = vt]re—la 0; ‘U’ UI/H Of, Qa (&
@) Q, ofloc] ~ o}, c

/

16/20

Soundness, S mode

Theorem

Assume that
-;-;x:7'|—§e:7<—>'—e—'
!
i
(Ui, Uc) ~los, o0) Ut

Then if [z +— wvile |} vj, j then there exist v, vy, oy, 0, @, j and ¢,
such that

(1) [z = vcle § vg, J'

(2) [z v]"e?, 05§ v;, 0p, Q, ¢
B3) Q, arloc] ~ 0}, €
) =d<x

/

16/20

Soundness, S mode

Theorem

Assume that
-;-;x:7'|—§e:7<—>'—e—'
!
i
(Ui, Uc) ~los, o0) Ut

Then if [z +— wvile |} vj, j then there exist v, vy, oy, 0, @, j and ¢,
such that

(1) [z = vcle § vg, J'

(2) [z v]"e?, 05§ v;, 0p, Q, ¢
B3) Q, arloc] ~ 0}, €
) =d<x

(5) (vi> ve) ®(oy, o)) Vi

/

16/20

Proof Method

* The soundness is proved using logical relations
e We construct two Kripke step-indexed relational models
e Two fundamental properties, one for each typing mode

¢ The soundness theorems are corollaries of the fundamental
properties of the logical relations

17/20

Summary

e Soundness proof for Costlt w.r.t. to concrete CP semantics

¢ Older poof was w.r.t. an abstract semantics
 Designed a target language (saML) with infrastructure for CP
e Translated Costlt to saML

e Proved the correctness of the translation and the change
propagation mechanism

* Proved that the cost derived by Costlt is a sound approximation
of the actual cost (for both C and S modes)

18/20

Future Work

¢ Devise a more efficient CP mechanism

¢ Mechanize the proof using a proof assistant

Adapt Costlt to derive the cost for demand-driven self-adjusting
computation

¢ Ongoing work: Implementation of the type system using
bidirectional type checking (E. Cicek and D. Garg)

19/20

Thank You!

Questions?

20/20

