Closure Conversion is Safe for Space

Zoe Paraskevopoulou Andrew W. Appel

Princeton University

ICFP’'19
Berlin, Germany

Compiler correctness

CompCert
Psrc eval Tsrc
Pilsner
— Compiler =
I Vellvm ,

verified

LLVM
DPtrg ----- eval ----> Ttrg

Certi\&X Coq

1/15

Compiler correctness

CompCert
Psrc eval T'src
Pilsner
N Compiler A
‘Vc”vm]
verified
LLVM
DPtrg ----- eval ----> Ttrg

Certi\&X Coq

Has (extensional)
property P

N

Has (extensional)
property P

1/15

Compiler correctness

CompCert
Psrc eval T'src
Pilsner
— Compiler ~
l\/e”vn?]
verified
LLVM
DPtrg ----- eval ----> Ttrg

Certi\&X Coq

Tsrc 1S 42!

N

Tirg IS 42!

1/15

Compiler correctness

CompCert
Psrc eval Tsrc
Pilsner
— Compiler ~
ch”vm ,
verified
LLVM
DPtrg ----- eval ----> Ttrg

Certi\&X Coq

Psrc runs in T' time
and M space

1/15

Preservation of Resource Consumption

Compiler transformations may leak resources!

2/15

Grokking V8 closures for fun (and
profit?)
Vyacheslav Egorov on 23 sep 2012

Beware of the closure memory leak in Javascri[I was thinking about writing a smallish blog post summarizing my thoughts on closure

instance field performance as a reply to Marijn Haverbeke's post which postulates in

| discussed closures in javascript in a previous article and the impact hit that you ¢ when I realized that this is an ideal candidate for a longer post that illustrates how

if you use them too much; remember that in s, each function is an object, so the ¢ closures and how these design decisions affect performance.

has a cost.

This article focuses on some examples of memory leaks using closu Contexts

How to create a memory leak in a function carries arou

Javascrlpt 'browser, node-IS‘ 5 when you execute fun

. . . . thing:

The major point to remember is that in a javascript closure An lnterestlng klnd OfJaVﬁSCI'IPt &

same context.
memory leak

function 0 g) David Glasser
- A H Aug 12,2013 - 6 min read
Recently, Avi and David tracked down a surprising JavaScript memory leak in
Meteor’s live HTML template rendering system. The fix will be in the 0.6.5
funetion(release (in its final stages of QA right now).
(functio:

I searched the web for variations on javascript closure memory leak and variables x and y becau
came up with nothing relevant, so it seemed like this is a relatively little- ists.

Co31s

known issue in the JavaScript context. (Most of what you find for that query

Preservation of Resource Consumption

Extend compiler correctness statement to include preservation of
time and space consumption

« extensions of CompCert!' 2

e Tricky for higher-order, memory-managed languages

'F. Besson, S. Blazy and P. Wilke. A Memory-Aware Verified C Compiler Using Pointer as Integer
Semantics, ITP’2017.

2Q. Carbonneaux,). Hoffman and T. Ramananandro, End-to-end verification of stack-space bounds
for C programs, PLDI’ 14.

This work

First formal proof that closure conversion is safe for space

 Implemented and verified in Coq for CertiCoq
« Profiling semantics for source and target

¢ Logical relation framework
NEW Principled way of reasoning about intensional properties
NEW Divergence preservation (w/ memory consumption)

5/15

CertiCoq

A verified compiler for Gallina.

Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe Paraskevopoulou,
Randy Pollack, Olivier Savary Belanger, Matthieu Sozeau, and Matthew Weaver

Certi\X Coq

 Implemented and verified in Cogq.

e GC implemented in C, verified in
Coq (VST).

Shengyi Wang, Qinxiang Cao, Anshuman Mohan, and Aquinas Hobor

Coq

MetaCoq
CertiCoq

L, (reified Coq)
l Type/proof erasure
L,

¥
Lg (CPS) <> Closure conversion

l C code generation

L7 (C light) = Garbage collection

{ CompCert

Assembly

6/15

Closure Conversion

Eliminates free variables by explicitly constructing a closure environment upon
function definition, and passing it as an argument at call sites.

let fe=x+y+2zin

I3

7115

Closure Conversion

Eliminates free variables by explicitly constructing a closure environment upon
function definition, and passing it as an argument at call sites.

let fenw = (y,2) in

' let feoge T €NV =2+ env.0+env.1 in
let fr=x+y+2zin ~ let f = (feodes fony) in
/3 let feoge = f.0in
let fepy = f.11in
fcode fenv3

7115

Closure Conversion

Eliminates free variables by explicitly constructing a closure environment upon
function definition, and passing it as an argument at call sites.

let feny = (y,2) in

. let feoge T €NV =2+ env.0+env.1 in
let fr=x4+y+2zin ~ let f = (foode, fome) in

f3 1etfcode :fOIIl
let feny = f.21in
fcode fenv3

Environment representation is crucial for the performance of the compiled code

Closure Environments

let foyz=
L
letg()=...2z...z...u...in
leth()=...y...z...w...in
h

f - f code | *]
g g =
h — hcode 1

Flat Environments

8/15

Closure Environments

let foyz=
L
letg()=...2z...z...u...in
leth()=...y...z...w...in
h

o] - f e {1 0
g —{geode | o g —
h — heode | * h — heode | *

Jcode

Flat Environments Linked Environments

8/15

Closure Environments

let foyz=
L
letg()=...2z...z...u...in
leth()=...y...z...w...in
h

f — fcode *
g =

h — hcode 7 h — hcode '/

Flat Environments

Linked + Shared (JavaScript V8)

8/15

Linked and Shared Environments Are Not Safe for Space

let fxyz=

[1]2]--- =]
J > feode |
9 —{Ge [-z T2
h =+ Peode | 1Y] 2 [W]

Flat Environments

lluw

Y

U...in
w...1in
1[2]--- [n]
fﬂfcode i ’lluw
[]]
MEIE
hf%hcode '/

Linked + Shared (JavaScript V8)

9/15

Resource Safety

Theorem
Closure conversion with flat closure environments is safe for time and space

COStirg € O(cOoStsyrc)

10/15

Profiling Semantics

H;p;e Ul(c’m) v; H' for [€ {src,trg}

where: (H,p,e) : Heap X Env X Exp is the input configuration
¢ is the fuel
m is the space consumption

Fuel based, can throw out-of-time exception: H; p; e Ul(cl’ml) 1

1/15

Profiling Semantics

H;p;e Ul(c’m) v; H' for [€ {src,trg}

where: (H,p,e) : Heap X Env X Exp is the input configuration
¢ is the fuel
m is the space consumption

Fuel based, can throw out-of-time exception: H; p; e l}l(cl’ml) 1

Source Target

 Function definition incurs cost « Function definition incurs unary cost
proportional to the number of its free « Memory : the maximum size of actual
variables heap

¢ Memory: the maximum size of * Invokes an ideal GC upon function

reachable heap entry

1/15

Top-level Theorem

Correctness of closure conversion, closed programs:

Theorem

If

s e~ E (closure conversion)

o e Jlem) gy 1y (source evaluation)
then

. Usﬁ?g’m?) vy Hy (target evaluation)

e (v1, Hy) relates to (vq, Hs) (functional correctness)
e << Kx*x¢ (time bound)

e my < my + costP*e(e) (space bound)

12715

Proof

13/15

The logical relation (roughly)

{P} (Hy,p1,e1) S%9 (Hy, pr,ea) {Q}
Configuration (H, p,e) : Heap X Env X Exp
P: precondition on the initial configurations

(): postcondition on the resource consumption of the
two programs

k: step index (bounds execution steps)

1: heap index (bounds heap deapth)

14/15

The logical relation (roughly)

{P} (Hy,p1,e1) S%9 (Hy, pr,ea) {Q}
Configuration (H, p,e) : Heap X Env X Exp
P: precondition on the initial configurations

(): postcondition on the resource consumption of the
two programs

Resource consumption preservation
+
Divergence preservation

14/15

In conclusion

So far...
 The first formal proof that closure conversion is safe for space
» Mechanized in Coq

 General logical relation framework to extend reasoning to intensional
properties

e Dead parameter elimination for mut. rec. functions, by Katja Vassilev

In the future...
» Extent upwards and downwards
 Propagate through CertiCoq to extend with Coq source logic

« Connect with C translation and concrete GC implementation

15715

Backup Slides

Shared Closures : a space safety counter example

fun sum_add (1 : list int) : int—int:=
let sum () = fold (+) 1 0 in

let m = sum () in

let add n = m + n in

add
val addM = mn-m
(* [0, ...; 0], M times %)

let 1 = repeat 0 M in adaM = l\' m

sum_add 1

Shared Closures : a space safety counter example

fun sum_add (1 : list int) : int—int:=

let = fold (+) 1 0 i
et sum () old (+) ln Expected space: O(1)

let m = sum () in

let add n = m + n in Actual space: O(M)

add
val addM = -\ m
(* [0, ...; 0], M times %)

let 1 = repeat 0 M in addM = l\’ m

sum_add 1

2/6

Shared Closures : a space safety counter example

fun sum_add (1 : list int) : int—int:=

1 = fold (+) 1 0 i
et sun () otd (%) o Expected space: O(M)

let m = sum () in ;
let add n = m + n in Actual space: O(M*?)
add

val addM =

(* [0, ...; 0], M times %)
let 1 = repeat 0 M in

4 B
sum_add 1 addM =l add..a. | e
Rln

2/6

Garbage Collection

GCs(Hy,Hy,) = SFHy ~3 Hy A
injectiver s, (8) A
dom(H,) C R(Hz)[B(95)]

H, is a collection of H; from root set S if:

e The reachable portions of H; and H; are equivalent up to the injective
renaming (3

¢ Only reachable locations are left in the domain
(R(H)[S] : set of reachable locations in H from root set .S)

3/6

CPS IR

(Ezpressions)

(Locations)
(Values)
(Environments)
(

(

Blocks)
Heaps)

e

[
v
o
b
h

M MMMM

Exp

Loc
Val
Env
Block
Heap

letz = C(¢) ine | letz = yiine
case y of {C; — e€;}ier
letrec f@ = e;iney | f @ | halt(x)

[|letrec f ¥ = e
Var — Loc

C(?) | Clo(v, o)

Loc — Block

4/6

Semantics: Application rule, pre- closure conversion

p(@) =7 p(f)=1
Hy(l) = Clo(letrec g 7' = e, pf) GCrLans (o Fv(en)] (H1s Ha,)
Hy; B0 (ps[Z — vllg = 1]); e1 YLo™ c<i c:cost(f:;E)AP
P

src

Hl;p; f T U('L ,max ms:Lze(Hl)) r

src

GC happens upon function entry: each function allocates a constant amount of
space before the next call

5/6

Semantics: Application rule, post- closure conversion

p(f) =0 p(f) = letrec g T =ce GCFLEnv(pf)[FV(e)} ()H17 H??/B)
A c,m

Hy; B o (17 Tllg = letrec g 7 = e])ie g’
c<1 ¢ = cost(f)

Hl p; f = l}g:irgnax m,size(H1))) -

AP P(I(l

6/6

	Appendix

