
Closure Conversion is Safe for Space

Zoe Paraskevopoulou Andrew W. Appel
Princeton University

ICFP’19
Berlin, Germany

Compiler correctness

CompCert

Pilsner

Has (extensional)
property P

Has (extensional)
property P

rsrc is 42!

rtrg is 42!

psrc runs in T time
and M space

psrc

Compiler

ptrg

eval

eval

rsrc

≈

rtrg

1 / 15

Compiler correctness

CompCert

Pilsner

Has (extensional)
property P

Has (extensional)
property P

rsrc is 42!

rtrg is 42!

psrc runs in T time
and M space

psrc

Compiler

ptrg

eval

eval

rsrc

≈

rtrg

1 / 15

Compiler correctness

CompCert

Pilsner

Has (extensional)
property P

Has (extensional)
property P

rsrc is 42!

rtrg is 42!

psrc runs in T time
and M space

psrc

Compiler

ptrg

eval

eval

rsrc

≈

rtrg

1 / 15

Compiler correctness

CompCert

Pilsner

Has (extensional)
property P

Has (extensional)
property P

rsrc is 42!

rtrg is 42!

psrc runs in T time
and M space

psrc

Compiler

ptrg

eval

eval

rsrc

≈

rtrg

1 / 15

Preservation of Resource Consumption

Compiler transformations may leak resources!

2 / 15

3 / 15

Preservation of Resource Consumption

Extend compiler correctness statement to include preservation of
time and space consumption

• extensions of CompCert1 2

• Tricky for higher-order, memory-managed languages

1F. Besson, S. Blazy and P. Wilke. A Memory-Aware Verified C Compiler Using Pointer as Integer
Semantics, ITP’2017.

2Q. Carbonneaux, J. Hoffman and T. Ramananandro, End-to-end verification of stack-space bounds
for C programs, PLDI’14.

4 / 15

This work

First formal proof that closure conversion is safe for space

• Implemented and verified in Coq for CertiCoq
• Profiling semantics for source and target
• Logical relation framework

NEW Principled way of reasoning about intensional properties
NEW Divergence preservation (w/ memory consumption)

5 / 15

CertiCoq

A verified compiler for Gallina.
Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe Paraskevopoulou,
Randy Pollack, Olivier Savary Belanger, Matthieu Sozeau, and Matthew Weaver

• Implemented and verified in Coq.
• GC implemented in C, verified in
Coq (VST).
Shengyi Wang, Qinxiang Cao, Anshuman Mohan, and Aquinas Hobor

Coq

L1 (reified Coq)

L2

L6 (CPS)

L7 (C light)

Assembly

Type/proof erasure

C code generation

Closure conversion

Garbage collection

CertiCoq
MetaCoq

CompCert

6 / 15

Closure Conversion

Eliminates free variables by explicitly constructing a closure environment upon
function definition, and passing it as an argument at call sites.

let f x = x + y + z in
. . .
f 3

⇝
let fenv = (y, z) in

let fcode x env = x + env.0 + env.1 in
let f = (fcode, fenv) in
. . .
let fcode = f.0 in
let fenv = f.1 in
fcode fenv 3

Environment representation is crucial for the performance of the compiled code

7 / 15

Closure Conversion

Eliminates free variables by explicitly constructing a closure environment upon
function definition, and passing it as an argument at call sites.

let f x = x + y + z in
. . .
f 3

⇝
let fenv = (y, z) in

let fcode x env = x + env.0 + env.1 in
let f = (fcode, fenv) in
. . .
let fcode = f.0 in
let fenv = f.1 in
fcode fenv 3

Environment representation is crucial for the performance of the compiled code

7 / 15

Closure Conversion

Eliminates free variables by explicitly constructing a closure environment upon
function definition, and passing it as an argument at call sites.

let f x = x + y + z in
. . .
f 3

⇝
let fenv = (y, z) in

let fcode x env = x + env.0 + env.1 in
let f = (fcode, fenv) in
. . .
let fcode = f.0 in
let fenv = f.2 in
fcode fenv 3

Environment representation is crucial for the performance of the compiled code

7 / 15

Closure Environments

let f x y z =
. . . l . . .
let g () = . . . x . . . z . . . u . . . in
let h () = . . . y . . . z . . . w . . . in
h

f fcode l u w

g gcode x z u

h hcode y z w

Flat Environments

8 / 15

Closure Environments

let f x y z =
. . . l . . .
let g () = . . . x . . . z . . . u . . . in
let h () = . . . y . . . z . . . w . . . in
h

f fcode l u w

g gcode x z u

h hcode y z w

Flat Environments

f fcode l u w

g gcode x z

h hcode y z

Linked Environments

8 / 15

Closure Environments

let f x y z =
. . . l . . .
let g () = . . . x . . . z . . . u . . . in
let h () = . . . y . . . z . . . w . . . in
h

f fcode l u w

g gcode x z u

h hcode y z w

Flat Environments

f fcode l u w

g gcode
x y z

h hcode

Linked + Shared (JavaScript V8)

8 / 15

Linked and Shared Environments Are Not Safe for Space

let f x y z =
. . . l . . .
let g () = . . . x . . . z . . . u . . . in
let h () = . . . y . . . z . . . w . . . in
h

1 2 · · · n

f fcode l u w

g gcode x z u

h hcode y z w

Flat Environments

1 2 · · · n

f fcode l u w

g gcode
x y z

h hcode

Linked + Shared (JavaScript V8)
9 / 15

Resource Safety

Theorem
Closure conversion with flat closure environments is safe for time and space

costtrg ∈ O(costsrc)

10 / 15

Profiling Semantics

H; ρ; e ⇓(c,m)
l v; H ′ for l ∈ {src, trg}

where: (H, ρ, e) : Heap × Env × Exp is the input configuration
c is the fuel

m is the space consumption

Fuel based, can throw out-of-time exception: H; ρ; e ⇓(c1,m1)
l ⊥

Source
• Function definition incurs cost
proportional to the number of its free
variables

• Memory: the maximum size of
reachable heap

Target
• Function definition incurs unary cost
• Memory : the maximum size of actual
heap

• Invokes an ideal GC upon function
entry

11 / 15

Profiling Semantics

H; ρ; e ⇓(c,m)
l v; H ′ for l ∈ {src, trg}

where: (H, ρ, e) : Heap × Env × Exp is the input configuration
c is the fuel

m is the space consumption

Fuel based, can throw out-of-time exception: H; ρ; e ⇓(c1,m1)
l ⊥

Source
• Function definition incurs cost
proportional to the number of its free
variables

• Memory: the maximum size of
reachable heap

Target
• Function definition incurs unary cost
• Memory : the maximum size of actual
heap

• Invokes an ideal GC upon function
entry

11 / 15

Top-level Theorem

Correctness of closure conversion, closed programs:

Theorem

If
• e⇝ ē (closure conversion)
• e ⇓(c1,m1)

src v1; H1 (source evaluation)

then
• ē ⇓(c2,m2)

trg v2; H2 (target evaluation)
• (v1, H1) relates to (v2, H2) (functional correctness)
• c1 ≤ c2 ≤ K ∗ c1 (time bound)
• m2 ≤ m1 + costspace(e) (space bound)

12 / 15

Proof

13 / 15

The logical relation (roughly)

{P} (H1, ρ1, e1) ⪅(k,i) (H2, ρ1, e2) {Q}

Configuration (H, ρ, e) : Heap × Env × Exp

P : precondition on the initial configurations

Q: postcondition on the resource consumption of the
two programs

k: step index (bounds execution steps)

i: heap index (bounds heap deapth)

14 / 15

The logical relation (roughly)

{P} (H1, ρ1, e1) ⪅(k,i) (H2, ρ1, e2) {Q}

Configuration (H, ρ, e) : Heap × Env × Exp

P : precondition on the initial configurations

Q: postcondition on the resource consumption of the
two programs

Resource consumption preservation
+

Divergence preservation
14 / 15

In conclusion

So far...
• The first formal proof that closure conversion is safe for space
• Mechanized in Coq
• General logical relation framework to extend reasoning to intensional
properties

• Dead parameter elimination for mut. rec. functions, by Katja Vassilev

In the future...
• Extent upwards and downwards
• Propagate through CertiCoq to extend with Coq source logic
• Connect with C translation and concrete GC implementation

15 / 15

Backup Slides

1 / 6

Shared Closures : a space safety counter example

fun sum_add (l : list int) : int →int :=
let sum () = fold (+) l 0 in
let m = sum () in
let add n = m + n in
add

val addM =
(* [0 ; . . . ; 0] , M t i m e s *)
let l = repeat 0 M in
sum_add l

Expected space: O(1)
Actual space: O(M)

0 0 · · · 0

addM addcode l m

0 0 · · · 0

addM addcode l m

0 0 · · · 0

addM addcode l m

0 0 · · · 0

addM addcode l m

2 / 6

Shared Closures : a space safety counter example

fun sum_add (l : list int) : int →int :=
let sum () = fold (+) l 0 in
let m = sum () in
let add n = m + n in
add

val addM =
(* [0 ; . . . ; 0] , M t i m e s *)
let l = repeat 0 M in
sum_add l

Expected space: O(1)
Actual space: O(M)

0 0 · · · 0

addM addcode l m

0 0 · · · 0

addM addcode l m

0 0 · · · 0

addM addcode l m

0 0 · · · 0

addM addcode l m

2 / 6

Shared Closures : a space safety counter example

fun sum_add (l : list int) : int →int :=
let sum () = fold (+) l 0 in
let m = sum () in
let add n = m + n in
add

val addM =
(* [0 ; . . . ; 0] , M t i m e s *)
let l = repeat 0 M in
sum_add l

Expected space: O(M)
Actual space: O(M2)

0 0 · · · 0

addM addcode l m

0 0 · · · 0

addM addcode l m

0 0 · · · 0

addM addcode l m

0 0 · · · 0

addM addcode l m

2 / 6

Garbage Collection

GCS(H1, H2, β) def= S ⊢ H1 ∼̇β H2 ∧
injectiveR(H1)[S](β) ∧
dom(H2) ⊆ R(H2)[β(S)]

H2 is a collection of H1 from root set S if:
• The reachable portions of H1 and H2 are equivalent up to the injective
renaming β

• Only reachable locations are left in the domain
(R(H)[S] : set of reachable locations in H from root set S)

3 / 6

CPS IR

(Expressions) e ∈ Exp ::= let x = C(y⃗) in e | let x = y.i in e
| case y of {Ci → ei}i∈I

| let rec f x⃗ = e1 in e2 | f x⃗ | halt(x)
(Locations) l ∈ Loc
(V alues) v ∈ Val ::= l | let rec f x⃗ = e
(Environments)σ ∈ Env = Var ⇀ Loc
(Blocks) b ∈ Block ::= C(v⃗) | Clo(v, σ)
(Heaps) h ∈ Heap = Loc ⇀ Block

4 / 6

Semantics: Application rule, pre- closure conversion

ρ(x⃗) = v⃗ ρ(f) = l
H1(l) = Clo(let rec g x⃗ = e1, ρf) GCFLEnv(ρf)[FV(e1)](H1, H2, β)

H2; β ◦ (ρf [x⃗ 7→ v⃗][g 7→ l]); e1 ⇓(i−c,m)
src r c ≤ i c = cost(f x⃗)

H1; ρ; f x⃗ ⇓(i,max(m,size(H1))
src r

App

GC happens upon function entry: each function allocates a constant amount of
space before the next call

5 / 6

Semantics: Application rule, post- closure conversion

ρ(x⃗) = v⃗ ρ(f) = let rec g x⃗ = e GCFLEnv(ρf)[FV(e)](H1, H2, β)
H2; β ◦ ([x⃗ 7→ v⃗][g 7→ let rec g x⃗ = e]); e ⇓(i−c,m)

trg r
c ≤ i c = cost(f x⃗)

H1; ρ; f x⃗ ⇓(i,max(m,size(H1)))
trg r

Appcc

6 / 6

	Appendix

