Foundational Property Based Testing
ITP, Nanjing 2015

Zoe Paraskevopoulou1,2 Cătălin Hrițcu1 Maxime Dénès1
Leonidas Lampropoulos3 Benjamin C. Pierce3

1Inria Paris-Rocquencourt \hspace{1em} 2ENS Cachan \hspace{1em} 3University of Pennsylvania

August 27, 2015
Testing and Proving

- Proving
 - very expensive, hard
 - strong guarantees
Testing and Proving

• Proving
 ♦ very expensive, hard
 ♦ strong guarantees

• Testing
 ♦ fast, easy
 ♦ weak guarantees

Testing helps proving!

Decreases the cost of formal proofs

Many successful projects that integrate testing into a proof assistant (Isabelle/HOL, Adga/Alfa, ...)

QuickChic for Coq

Can proving help testing?
Testing and Proving

- **Proving**
 - very expensive, hard
 - strong guarantees

- **Testing**
 - fast, easy
 - weak guarantees

- **Testing helps proving!**
 - Decreases the cost of formal proofs
 - Many successful projects that integrate testing into a proof assistant (Isabelle/HOL, Adga/Alfa, ...)
 - QuickChic for Coq
Testing and Proving

• Proving
 ♦ very expensive, hard
 ♦ strong guarantees

• Testing
 ♦ fast, easy
 ♦ weak guarantees

• Testing helps proving!
 ♦ Decreases the cost of formal proofs
 ♦ Many successful projects that integrate testing into a proof assistant (Isabelle/HOL, Adga/Alfa, ...)
 ♦ QuickChic for Coq

• Can proving help testing?
Foundational property based testing framework

- Formally verify testing infrastructure
- Does it correspond to the desired property?
- Our framework builds on top of QuickChick, our PTB tool for Coq
Property Based Testing

• Allows to test code in terms of functional correctness by generating a large number of randomly generated inputs

• High level of automation
Property Based Testing

- Allows to test code in terms of *functional correctness* by generating a large number of randomly generated inputs
- High level of automation
- The user has to write:
Property Based Testing

- Allows to test code in terms of *functional correctness* by generating a large number of randomly generated inputs
- High level of automation
- The user has to write:
 - **Generators**
 - Random generation of input data
Property Based Testing

- Allows to test code in terms of functional correctness by generating a large number of randomly generated inputs
- High level of automation
- The user has to write:
 - **Generators**
 - Random generation of input data
 - **Checkers**
 - Programs that test the desired specification
QuickChick

- Property based testing for Coq (port of Haskell's QuickCheck)
- Implemented in Coq
- It relies on extraction to OCaml for efficient execution
- Low level random generation primitives are implemented in OCaml
- Provides a library of combinators that are used to construct Generators and Checkers
Contributions

- Testing framework: QuickChick

Contributions

- Testing framework: QuickChick
- Verification framework

Contributions

- Testing framework: QuickChick
- Verification framework
 - We give semantics to both generators and checkers

Contributions

- Testing framework: QuickChick
- Verification framework
 - We give semantics to both generators and checkers
 - Generators
 - Prove them sound and complete w.r.t to specifications
 - Abstraction: reason about their *set of outcomes*
 - Avoid probabilistic reasoning
 - The idea of verified generators dates back to Dybjer et al. ¹
 - Checkers
 - Prove that they correspond to the right logical proposition
 - We give specifications to QuickChick combinators and prove them correct w.r.t them
 - verify the testing tool itself
 - facilitate reasoning about combinators and checkers

Contributions

- Testing framework: QuickChick
- Verification framework
 - We give semantics to both generators and checkers
 - Generators
 - Prove them sound and complete w.r.t to specifications
 - Abstraction: reason about their set of outcomes
 - Avoid probabilistic reasoning
 - The idea of verified generators dates back to Dybjer et al.1
 - Checkers
 - Prove that they correspond to the right logical proposition

1P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in dependent type theory. TPHOLs. 2003.
Contributions

- Testing framework: QuickChick
- Verification framework
 - We give semantics to both generators and checkers
 - Generators
 - Prove them sound and complete w.r.t to specifications
 - Abstraction: reason about their set of outcomes
 - Avoid probabilistic reasoning
 - The idea of verified generators dates back to Dybjer et al. ¹
 - Checkers
 - Prove that they correspond to the right logical proposition
 - We give specifications to QuickChick combinators and prove them correct w.r.t them
 - verify the testing tool itself
 - facilitate reasoning about combinators and checkers

Contributions

• Testing framework: QuickChick
• Verification framework
 ♦ We give semantics to both generators and checkers
 ♦ Generators
 ▶ Prove them sound and complete w.r.t to specifications
 ▶ Abstraction: reason about their set of outcomes
 ▶ Avoid probabilistic reasoning
 ▶ The idea of verified generators dates back to Dybjer et al. ¹
 ♦ Checkers
 ▶ Prove that they correspond to the right logical proposition
 ♦ We give specifications to QuickChick combinators and prove them correct w.r.t them
 ▶ verify the testing tool itself
 ▶ facilitate reasoning about combinators and checkers
 ♦ Case studies: Red-black trees (next), testing noninterference

Running Example
Red-black Trees
Red-Black Trees

• Binary trees with an additional color label to each node

\[
\begin{align*}
\text{Inductive color} & \coloneqq \text{Red} \mid \text{Black}. \\
\text{Inductive tree} & \coloneqq \\
& | \text{Leaf} : \text{tree} \\
& | \text{Node} : \text{color} \to \text{tree} \to \text{nat} \to \text{tree} \to \text{tree}.
\end{align*}
\]

• Invariant:
 • The root is always black
 • The leaves are empty and black
 • For each node the path to each possible leaf has the same number of black nodes
 • Red nodes can only have black children

• RB tree operations should preserve the invariant
• We want to test that for insert
Declarative Definitions

• The property to we would like to test

```plaintext
Definition insert_preserves_rb : Prop :=
  \forall (x : nat) (t : tree), is_redblack t \rightarrow is_redblack (insert x t).
```
Declarative Definitions

- The property to we would like to test

\[
\text{Definition } \text{insert_preserves_rb} : \text{Prop} := \\
\forall (x : \text{nat}) (t : \text{tree}), \text{is_redblack} t \rightarrow \text{is_redblack} (\text{insert} x t).
\]

- Red-black invariant

\[
\text{Inductive } \text{is_redblack}' : \text{tree} \rightarrow \text{color} \rightarrow \text{nat} \rightarrow \text{Prop} := \\
| \text{IsRB_leaf} : \forall c, \text{is_redblack}' \text{Leaf} c 0 \\
| \text{IsRB_r} : \forall n tl tr h, \text{is_redblack}' tl \text{Red} h \rightarrow \text{is_redblack}' tr \text{Red} h \rightarrow \\
\hspace{1cm} \text{is_redblack}' (\text{Node} \text{Red} tl n tr) \text{Black} h \\
| \text{IsRB_b} : \forall c n tl tr h, \text{is_redblack}' tl \text{Black} h \rightarrow \text{is_redblack}' tr \text{Black} h \rightarrow \\
\hspace{1cm} \text{is_redblack}' (\text{Node} \text{Black} tl n tr) c (S h).
\]

\[
\text{Definition } \text{is_redblack} (t : \text{tree}) : \text{Prop} := \exists h, \text{is_redblack}' t \text{Red} h.
\]

- But declarative definitions are not well suited to testing
Testing the property

We need...

• An (efficiently) executable definition of the invariant

```plaintext
Definition is_redblack_bool (t : tree) : bool :=
  is_black_balanced t && has_no_red_red Red t.
```
Testing the property

We need...

- An (efficiently) executable definition of the invariant

```coq
Definition is_redblack_bool (t : tree) : bool :=
  is_black_balanced t && has_no_red_red Red t.
```

- An arbitrary tree generator

```coq
Fixpoint genAnyTree_depth (h : nat) : G tree :=
  match h with
  | 0 ⇒ returnGen Leaf
  | S h' ⇒ freq [(1, returnGen Leaf);
   (9, liftGen4 Node genColor (genAnyTree_depth h')
    genNat (genAnyTree_depth h'))]
  end.

Definition genAnyTree : G tree := bindGen genNat genAnyTree_depth.
```
Testing the property

We need...

- An (efficiently) executable definition of the invariant

```plaintext
Definition is_redblack_bool (t : tree) : bool :=
  is_black_balanced t && has_no_red_red Red t.
```

- An arbitrary tree generator

```plaintext
Fixpoint genAnyTree_depth (h : nat) : G tree :=
  match h with
  | 0 ⇒ returnGen Leaf
  | S h' ⇒ freq [(1, returnGen Leaf);
    (9, liftGen4 Node genColor (genAnyTree_depth h')
      genNat (genAnyTree_depth h'))]
  end.
Definition genAnyTree : G tree := bindGen genNat genAnyTree_depth.
```

- A property checker

```plaintext
Definition insert_preserves_rb_checker (genTree : G tree) : Checker :=
  forAll genNat (fun n ⇒ forAll genTree (fun t ⇒
    is_redblack_bool t ==> is_redblack_bool (insert n t))).
```
So, are we done?

```plaintext
QuickChick (insert_preserves_rb_checker genAnyTree).

*** Gave up! Passed only 2415 tests
Discarded: 20000
```
So, are we done?

QuickChick (insert_preserves_rb_checker genAnyTree).

*** Gave up! Passed only 2415 tests
Discarded: 20000

- Our simple generator is very inefficient!
- In QuickChick test cases that do not satisfy the preconditions are discarded
- For most of the test cases the property is vacuously true

Definition insert_preserves_rb_checker (genTree : G tree) : Checker :=
 forAll genNat (fun n ⇒ forAll genTree (fun t ⇒
 is_redblack Bool t ==⇒ is_redblack Bool (insert n t))).
Can we do better?

Program Fixpoint genRBTree_height (hc : nat*color) {wf wf_hc hc} : G tree :=
match hc with
| (0, Red) ⇒ returnGen Leaf
| (0, Black) ⇒ oneOf [returnGen Leaf; (do! n ← arbitrary; returnGen (Node Red Leaf n Leaf))]
| (S h, Red) ⇒ liftGen4 Node (returnGen Black) (genRBTree_height (h, Black))
 genNat (genRBTree_height (h, Black))
| (S h, Black) ⇒ do! c' ← genColor;
 let h' := match c' with Red ⇒ S h | Black ⇒ h end in
 liftGen4 Node (returnGen c') (genRBTree_height (h', c'))
 genNat (genRBTree_height (h', c')) end.

Definition genRBTree := bindGen genNat (fun h ⇒ genRBTree_height (h, Red)).

- We claim that this generator produces only RB trees.
Can we do better?

Program Fixpoint genRBTree_height (hc : nat*color) {wf wf_hc hc} : G tree :=
 match hc with
 | (0, Red) ⇒ returnGen Leaf
 | (0, Black) ⇒ oneOf [returnGen Leaf; (do! n ← arbitrary; returnGen (Node Red Leaf n Leaf))]
 | (S h, Red) ⇒ liftGen4 Node (returnGen Black) (genRBTree_height (h, Black))
 | (S h, Black) ⇒ do! c' ← genColor;
 | (S h, Black) ⇒ do! c' ← genColor;
 let h' := match c' with Red ⇒ S h | Black ⇒ h end in
 liftGen4 Node (returnGen c') (genRBTree_height (h', c'))
 genNat (genRBTree_height (h', c')) end.

Definition genRBTree := bindGen genNat (fun h ⇒ genRBTree_height (h, Red)).

- We claim that this generator produces only RB trees.

QuickChick (insert_preserves_rb_checker genRBTree).

+++ OK, passed 10000 tests
Can we do better?

Program Fixpoint genRBTree_height (hc : nat*color) {wf wf_hc hc} : G tree :=
 match hc with
 | (0, Red) ⇒ returnGen Leaf
 | (0, Black) ⇒ oneOf [returnGen Leaf; (do! n ← arbitrary; returnGen (Node Red Leaf n Leaf))]
 | (S h, Red) ⇒ liftGen4 Node (returnGen Black) (genRBTree_height (h, Black))
 genNat (genRBTree_height (h, Black))
 | (S h, Black) ⇒ do! c' ← genColor;
 let h' := match c'with Red ⇒ S h | Black ⇒ h end in
 liftGen4 Node (returnGen c') (genRBTree_height (h', c'))
 genNat (genRBTree_height (h', c')) end.

Definition genRBTree := bindGen genNat (fun h ⇒ genRBTree_height (h, Red)).

- We claim that this generator produces only RB trees.

QuickChick (insert_preserves_rb_checker genRBTree).

++ OK, passed 10000 tests

- It seems that it works well in practice
Are we there yet?

- The previous generator is dubious (complex + unverified \rightarrow dubious)
Are we there yet?

- The previous generator is dubious (complex + unverified \rightarrow dubious)
- This generator also pass all the tests with no discards

Definition genRBTree := returnGen Leaf.
Our framework

- How do we know that we are generating all possible RB trees and only them?

- **Idea:** Assign semantics to each generator mapping them to the support of the underlying probability distribution
Our framework

- How do we know that we are generating all possible RB trees and only them?
- **Idea:** Assign semantics to each generator mapping them to the support of the underlying probability distribution
- How do we know that we are testing the logical proposition we started with?
- **Idea:** Assign semantics to each checker mapping it to the logical proposition that it tests.

```
1  semGen : \ forall A : Type, G A -> set A
2
3
4  semChecker : Checker -> Prop
```
Formal proof

Lemma \(\text{semRBTree} : \text{semGen \ genRBTree} \equiv [\text{set } t \mid \text{is_redblack } t] \).
Formal proof

Lemma semRBTree: \(\text{semGen genRBTree} \equiv [\text{set } t \mid \text{is_redblack } t] \).

Lemma is_redblackP t: reflect (is_redblack t) (is_redblack_bool t).
Formal proof

Lemma semRBTree: \texttt{semGen genRBTree} \equiv [\texttt{set t | is_redblack t}].

Lemma is_redblackP t: reflect (is_redblack t) (is_redblack_bool t).

Lemma insert_preserves_rb_checker_correct:
\begin{verbatim}
 \texttt{semChecker (insert_preserves_rb_checker genRBTree)}
\end{verbatim}
\begin{verbatim}
\leftrightarrow \texttt{insert_preserves_rb}.
\end{verbatim}
Formal proof

```
Lemma semRBTree : semGen genRBTree ≡ [set t | is_redblack t].
```

```
Lemma is_redblackP t : reflect (is_redblack t) (is_redblack_bool t).
```

```
Lemma insert_preserves_rb_checker_correct:
  semChecker (insert_preserves_rb_checker_genRBTree)
  ↔ insert_preserves_rb.
```

- Complete example: 150 lines of proofs for 236 lines of definitions.
Semantics

- **Generator type**: Definition \(G : \text{Type} \Rightarrow \text{nat} \rightarrow \text{RandomSeed} \rightarrow A. \)

\[
\begin{align*}
\text{Definition} \; \text{semGenSize} \{A : \text{Type}\} (g : G A) (size : \text{nat}) : \text{set} \; A := \\
\quad \bigcup_{\text{seed} \in \text{Seeds}} g \; \text{size} \; \text{seed}.
\end{align*}
\]

\[
\begin{align*}
\text{Definition} \; \text{semGen} \{A : \text{Type}\} (g : G A) : \text{set} \; A := \\
\quad \bigcup_{\text{size} \in \mathbb{N}} \text{semGenSize} \; g \; \text{size}.
\end{align*}
\]
Semantics

- **Generator type**: Definition $G A = \text{nat} \rightarrow \text{RandomSeed} \rightarrow A$.

\[
\text{Definition } \text{semGenSize} \{A : \text{Type}\} (g : G A) (\text{size} : \text{nat}) : \text{set } A := \\
\quad \bigcup_{\text{seed} \in \text{Seeds}} g \text{ size seed}.
\]

- **Checkers are internally represented as generators of testing results**

\[
\text{Definition } \text{semCheckerSize} (c : \text{Checker}) (s : \text{nat}) : \text{Prop} := \\
\quad (\text{successful} \circ @: \text{semGenSize} c s) \subset [\text{set true}].
\]

\[
\text{Definition } \text{semChecker} (c : \text{Checker}) : \text{Prop} := \forall s, \text{semCheckerSize} c s.
\]
Size Abstraction

- Abstracting of sizes is not always possible! In the general case the semantics and the specifications need to be size parametric.

\[
\text{Lemma semBindSize } A \ B \ (g : G A) \ (f : A \to G B) \ (s : \text{nat}) : \\
\text{semGenSize (bindGen } g \ f) \ s \equiv \\
\bigcup_{a \in \text{semGenSize } g \ s} \text{semGenSize } (f \ a) \ s.
\]

- Size abstraction only possible for \textit{unsized} and \textit{size-monotonic} generators

\[
\text{Lemma semBindSizeMonotonic :} \\
\forall \{A \ B\} \ (g : G A) \ (f : A \to G B) \\
\{\text{SizeMonotonic } g\} \ \{\forall a, \text{SizeMonotonic } (f \ a)\}, \\
\text{semGen } (\text{bindGen } g \ f) \equiv \bigcup_{a \in \text{semGen } g} \text{semGen } (f \ a).
\]

- We provide size parametrized specifications for all of the combinators along with unsized specifications
Foundational Verification

- Using our possibilistic semantics we verify QuickChick all the way down relying on a very small set of assumptions.
- We verify all the combinators of QuickChick providing a library of generic lemmas that can be used in a compositional way.
Assumptions

- QuickChick's PRNG (pseudorandom number generator) is written in OCaml
- Low-level operations (such as random seed handling, generation of natural numbers, etc.) and their specifications are axiomatized in Coq
- We could remove most of the axioms by implementing PRNG in Coq
- One axiom would remain
 - The type of random seeds is infinite
- Our model abstracts away from mathematical randomness (probabilities), which is an idealization of pseudorandomness
Larger case study: Testing Noninterference

- We verified existing generators used in complex testing infrastructure for an information flow control (IFC) machine
- Generators used to produce pairs of indistinguishable states
- We proved that the generators were sound and complete w.r.t a subset of all possible indistinguishable states
- The process revealed bugs in generation
- Minimal changes to existing testing code were required
- 2000 lines of proofs for 2000 lines of Coq code (1000 lines of definitions and 1000 lines of generation code)
Conclusion and Future work

- Coq framework for verified PBT, integrated in QuickChick
 - https://github.com/QuickChick
- First verified QuickCheck implementation
- We avoid probabilisting reasoning at all level using possibilistic semantics
- Modular, scalable, minimal changes to existing code
- Future work: Reduce verification effort (typeclass automation, certificate producing testing automation)
Thank You!

Questions?
Related work

- Dybjer et al. first proposed the idea of verified generators (completeness property)
- Focaltest: Verified tool that automatically generates test data that satisfy MC/DC coverage for preconditions using constraint reasoning
- HOL-TestGen: Introduced explicit test-hypotheses that represent what remains to be proved
Examples of specifications

```
Lemma semReturn {A} (x : A) : semGen (returnGen x) ≡ [set x].

Lemma semBindUnsized1:
  ∀ A B (g : G A) (f : A → G B) `{Unsized _ g},
  semGen (bindGen g f) ≡ \bigcup_{a \in semGen g} semGen (f a).

Lemma semFmap:
  ∀ A B (f : A → B) (g : G A), semGen (fmap f g) ≡ f @: semGen g.

Lemma semOneOf:
  ∀ A (g0 : G A) (gs : list (G A)),
  semGen (oneOf (g0 ;; gs)) ≡ \bigcup_{g \in (g0 :: gs)} semGen g.

Lemma semListOfUnsized:
  ∀ {A} (g : G A) (k : nat) `{Unsized _ g},
  semGen (listOf g) ≡ [set l | l \subset semGen g ].
```