
Verified Optimizations for Functional
Languages

Zoe Paraskevopoulou

A Dissertation
Presented to the Faculty
of Princeton University

in Candidacy for the Degree
of Doctor of Philosophy

Recommended for Acceptance
by the Department of

Computer Science
Adviser: Andrew W. Appel

November 2020

c© Copyright by Zoe Paraskevopoulou, 2020.
All rights reserved.

Abstract

Coq is one of the most widely adopted proof development systems. It allows pro-
grammers to write purely functional programs and verify them against specifications
with machine-checked proofs. After verification, one can use Coq’s extraction plu-
gin to obtain a program (in OCaml, Haskell, or Scheme) that can be compiled and
executed. However, bugs in either the extraction function or the compiler of the
extraction language may cause the executable to exhibit unexpected behaviors, ren-
dering source-level verification futile.

A verified compiler is a compiler whose output provably preserves the semantics
of the source language. CertiCoq is a verified compiler, currently under development,
for Coq’s specification language, Gallina. CertiCoq targets Clight, a subset of the
C language, that can be compiled with the CompCert verified compiler to obtain a
certified executable, bridging the gap between the formally verified source program
and the compiled target program.

In this thesis, I present the implementation and verification of CertiCoq’s opti-
mizing middle-end pipeline. CertiCoq’s middle end consists of seven different trans-
formations and is responsible for efficiently compiling an untyped purely functional
intermediate language to a subset of the same language, which can be readily com-
piled to a first-order, low-level intermediate language. CertiCoq’s middle-end pipeline
performs crucial optimizations for functional languages including closure conversion,
uncurrying, shrink-reductions and inlining. It advances the state of the art of ver-
ified optimizing compilers for functional languages by implementing more efficient
closure-allocation strategies.

For proving CertiCoq correct, I develop a framework based on the technique of
logical relations, making novel technical contributions. I extend logical relations with
notions of relational preconditions and postconditions that facilitate reasoning about
the resource consumption of programs simultaneously with functional correctness. I
demonstrate how this enables reasoning about preservation of non-terminating be-
haviors, which is not supported by traditional logical relations. Moreover, I develop
a novel, lightweight technique that allows logical-relation proofs to be composed in
order to obtain a top-level compositional compiler correctness theorem. This tech-
nique is used to obtain a separate compilation theorem that guarantees that programs
compiled separately through CertiCoq, perhaps using different sets of optimizations,
can be safely linked at the target level. Lastly, I use the framework to prove that
CertiCoq’s closure conversion is not only functionally correct but also safe for time
and space, meaning that it is guaranteed to preserve the asymptotic time and space
complexity of the source program.

iii

Acknowledgements

First and foremost, I would like to thank my advisor Andrew Appel. I am deeply
grateful to him for the ample support and guidance throughout the years of my PhD.
He always gave me the freedom to pursue my ideas, while encouraging me and valuing
my work. His dedication, his vision for machine-checked proofs, and his capacity for
acceptance and understanding will always be an inspiration. I am also thankful to
him for his detailed feedback during the process of writing this dissertation.

I want to thank the members of my thesis committee Amal Ahmed, Dave Walker,
Aarti Gupta and Zachary Kincaid. I am especially thankful to the readers of my
dissertation, Amal Ahmed and Dave Walker, for undertaking the laborious task of
reading my dissertation and for providing helpful and detailed feedback.

I want to thank the members of the CertiCoq team for the fruitful collaboration,
the interesting discussions, and their help with technical issues.

I am grateful to Leonidas Lampropoulos, Yannick Forster and Anvay Grover for
their valuable feedback on this dissertation.

I am thankful to Anvay Grover and Katja Vassilev for trusting me to supervise
them during their senior thesis work and mentor them at the beginning of their
academic journey. I wish them the very best in their future endeavors.

I am very thankful to John Li for his contributions to the verification of the λANF
pipeline.

I want to sincerely thank Nikhil Swamy, Jonathan Protzenko, and Tahina Ra-
mananandro for hosting me as an intern at MSR Redmond for two consecutive sum-
mers and giving me the opportunity to work on interesting problems. It was a great
pleasure working with them.

I am deeply grateful to my undergraduate thesis advisor, Cătălin Hrit,cu, and my
master thesis advisor, Deeepak Garg. I feel extremely lucky to have been advised
by them. Their high research standards, their genuine enthusiasm for research, and
their attention to technical detail has shaped me as a researcher. Working with them
provided me with inspiration and technical knowledge that was invaluable for my
graduate studies.

I wand to thank my labmates at the Princeton programming languages lab. Their
presence made my years as a PhD student more pleasant and more interesting.

I want to thank the stuff of the Computer Science Department and the Graduate
School for helping make our graduate studies as smooth as possible. I am especially
thankful to Nicki Mahler for her help in coordinating the defense and the submission
of this thesis.

I am deeply thankful to the Seibel Foundation and the Seeger Center for Hellenic
Studies for the generous scholarships during my PhD studies.

Last but not least, I want to thank all of my family and friends in Greece and in
the USA for their presence, their support and all the moments we have shared. I’m
especially thankful to my mother, Maria, and my father Aris. This thesis is dedicated
to my grandmother, Zoe, for being an endless source of love and support throughout
my life.

iv

This material is based upon work supported by the National Science Foundation
under Grants CCF-1407794 and CCF-1521602.

v

To my Grandma.
q

Στη Γιαγιά μου.

vi

Contents

Abstract . iii
Acknowledgements . iv
List of Figures . x

1 Introduction 1
1.1 The Coq Proof Assistant . 2
1.2 Verified Compilation . 4
1.3 Compiling Functional Languages . 7
1.4 Summary of Contributions . 9

2 CertiCoq Overview 12
2.1 The CertiCoq Pipeline and Runtime 13

2.1.1 The Pipeline . 13
2.1.2 Representation of Coq types in C 16
2.1.3 Garbage Collection . 16
2.1.4 Foreign Function Interface . 17
2.1.5 Verification . 18
2.1.6 Collaboration . 18

2.2 Running CertiCoq . 19

3 Intermediate Representation 21
3.1 Functional Intermediate Representations: CPS vs . ANF 21
3.2 Syntax . 23

3.2.1 Useful Definitions . 26
3.3 Semantics . 27

3.3.1 Big-Step vs . Small-Step Semantics. 27
3.3.2 Formal Definition . 29
3.3.3 Properties of the Semantics 33

3.4 Conclusion . 35

4 The λANF Optimizing Pipeline 36
4.1 Overview . 36
4.2 Closure Strategies . 37
4.3 Transformations . 40

4.3.1 Shrinking . 40
4.3.2 Inlining . 42

vii

4.3.3 Uncurrying . 45
4.3.4 Closure Conversion . 47
4.3.5 Lambda Lifting . 48
4.3.6 Dead Parameter Elimination 50

4.4 Compilation by Example . 51
4.5 Related Work . 55

4.5.1 Optimizations in Other Verified Compilers 55
4.5.2 Compilation-by-Transformation in other Compilers 56

4.6 Conclusion . 58

5 Relational Proof Framework 59
5.1 Relations for Compiler Correctness 61

5.1.1 Reasoning About Linking . 61
5.2 Logical Relations . 63

5.2.1 Reasoning with the Logical Relation 65
5.2.2 Reasoning About Divergence 66
5.2.3 Fuels and Traces . 69
5.2.4 CertiCoq’s Logical Relations 69
5.2.5 Reasoning with Local and Global Postconditions 73
5.2.6 Compatibility Lemmas . 76
5.2.7 Properties of the Logical Relations 81

5.3 Compositional Proof Framework . 83
5.4 Related Work . 86

5.4.1 Other Verified Compilers for Functional Languages 86
5.4.2 Compositional Compiler Correctness 87
5.4.3 Relational Reasoning for Program Resources 90

5.5 Conclusion . 90

6 Correctness of Transformations 92
6.1 Correctness of λANF transformations 92

6.1.1 Inlining . 93
6.1.2 Shrinking . 95
6.1.3 Uncurrying . 96
6.1.4 Closure Conversion, Hoisting, and Lambda Lifting 96

6.2 Top-level Theorem for λANF . 97
6.3 Coq Proof Development . 97

6.3.1 Specification . 97
6.3.2 Top-level Theorem . 99
6.3.3 Proof Artifact . 99

7 Space Safety 100
7.1 Introduction . 100
7.2 Closure Representation . 102

7.2.1 Flat Closure Representation 102
7.2.2 Linked Closure Representation 104

viii

7.2.3 The Main Theorem . 105
7.3 Language and Memory Model . 105

7.3.1 Syntax . 106
7.4 Heap Isomorphism . 108
7.5 Profiling Semantics . 110

7.5.1 Formal Model of Garbage Collection 112
7.5.2 Operational Semantics . 113

7.6 Closure Conversion . 116
7.7 Logical Relation . 118

7.7.1 Configuration Relation: A Failed Attempt 119
7.7.2 Logical Relation Definition . 121
7.7.3 Properties . 124

7.8 Correctness Proof . 127
7.8.1 Time Bound . 127
7.8.2 Space Bound . 127
7.8.3 Correctness . 130

7.9 Related Work . 132
7.10 Conclusion . 135

8 Evaluation 136
8.1 Experimental Setup . 136
8.2 Benchmarks . 137
8.3 Results . 137

8.3.1 CertiCoq CPS vs . CertiCoq ANF vs . OCaml 137
8.3.2 CompCert vs . Clang . 138
8.3.3 Lambda lifting . 139

9 Conclusions and Future Work 146
9.1 Conclusions . 147
9.2 Future Work . 148

Bibliography 149

ix

List of Figures

2.1 The CertiCoq pipeline. 13
2.2 A block in the CertiCoq heap. 16

3.1 The syntax of λANF. 24
3.2 Evaluation semantics of λANF. 32

4.1 The λANF optimizing pipeline. 40
4.2 Inlining of let-bound calls. 44
4.3 Inlining using a join point. 45

5.1 The symmetrical logical relation. 70
5.2 Logical relation for closure conversion. 71
5.3 The E+ relation. 84
5.4 The E+

CC relation. 85

7.1 Flat and linked closure representations. Linked closures appear to save
space; for example, the flat closure environment for h is three words
(x, y, u) but the linked representation is just one word. But linked
closures are not safe for space; suppose k is live but g is not, then with
flat closures w is garbage-collectible but with linked closures w is still
reachable. If w is the root of a large data structure, this is significant. 103

7.2 Linked closures are not safe for space. Each g closure contains (indi-
rectly) a different long list l, while a flat closure for g would contain
only the two integer values of m and n. 105

7.3 Syntax and memory model of λCPS. 106
7.4 Big-step operational semantics (source). 114
7.5 Big-step operational semantics (target). 115
7.6 Free variable judgment. 117
7.7 Closure conversion. 118
7.8 Value relation . 123

8.1 CertiCoq benchmarks: CertiCoq (ANF and CPS) vs . OCaml (native
and bytecode). OCaml numbers for color are omitted because Coq’s
built-in extraction generates illegal code. 138

8.2 CertiCoq benchmarks: CertiCoq + Clang vs . CertiCoq + CompCert. 139
8.3 CertiCoq benchmarks: CertiCoq ANF/CPS vs . CertiCoq ANF/CPS

+ LL (Lambda Lifting). 140

x

8.4 CertiCoq benchmarks: CertiCoq ANF/CPS + LLc (conservative inlin-
ing) vs . CertiCoq ANF/CPS + LLa (aggressive inlining) 142

8.5 CertiCoq benchmarks: comparison of lambda lifting allowing parame-
ters to be live at most during n calls (LLn). 143

8.6 CertiCoq benchmarks: CertiCoq ANF/CPS + LLn (no inlining in
wrappers) vs . CertiCoq ANF/CPS + LLi (inlining). 143

xi

Chapter 1

Introduction

A formal proof in a formal system of logic is a sequence of formulas expressed in the
formal language of the system, such that each formula in the sequence is either an
axiom or it can be derived by previous formulas in the sequence using an inference
rule. A formal proof can be machine checked : given a computer representation of a
formal system and a proof written in it, a computer program can decide if the proof
is valid. This is in contrast with usual mathematical proofs that argue about the
truth of a statement using informal meta-mathematical language, and can conceal
logical fallacies, or “proof bugs”. The idea that computer programs can, and should,
be used to verify the validity of mathematical proofs dates back to the early days
of computing and led to the development of algorithms, languages, and tools that
allow mathematicians and computer scientists to express, mechanically verify, or even
automatically derive mathematical proofs [93, 136, 94].

Computer programs, just as proofs, can have bugs that prevent them from carrying
out a computation correctly. With formal verification, we can reason about the
absence of bugs in programs by using machine checked proofs to prove that they satisfy
a formal specification. Therefore, we transfer the trust from the implementation to
the specification. We trust such proofs because the soundness of the formal system
has been demonstrated with a metatheoretical proof argument, giving us confidence
that we cannot construct a proof for an absurd proposition. Nevertheless, the proof-
checking program can be an intricate piece of software and as such, it can itself have
bugs that may allow invalid proofs to be constructed. In addition, after the software is
verified against its specification, it will be compiled to machine code and executed on
a machine. For the specification to be met by the executable program, the executable
is assumed to have the same the computational behavior as the source program, as
this is prescribed by the semantics of the source language. Consequently, when we
carry out machine-checked proofs about programs, we have to trust not only that the
proof checker implements the formal system correctly, but also that the compiler and
the runtime system correctly compile and execute the program. These, together with
the formal specification of the verified program, constitute the trusted computing base
(TCB) of formal verification. Of course, we can remove the implementations of the
proof-checking program and compiler from the TCB, by mechanically verifying them
with respect to the aforementioned specifications.

1

In this thesis, I explore the design, implementation and verification of a large part
of the CertiCoq verified compiler for Coq: one of the most widely used proof assistants
today that enables formally verified software to be built and run. In the process of
building and verifying (part of) the CertiCoq compiler, I make technical contributions
to the design space of verified compilers and the available proof techniques for proving
compilers correct. In the rest of this introduction, I will give an overview of the
Coq proof assistant, a brief introduction to compiler correctness and compilation of
functional languages, and an overview of the work presented in this thesis.

1.1 The Coq Proof Assistant

A proof assistant is software comprising a proof checking program and an interactive
proof-development environment that helps the user construct a proof. Coq [37], as
well as a number of other proof assistants, is based on dependent type theory. In the
type theoretic approach of proof-checking, the problem of proof checking reduces to
the problem of type-checking. This is made possible by the so-called propositions-
as-types interpretation [19, 135]: formulas and proofs in logical systems can be in-
terpreted as types and typing derivations in type systems. The logical formalism on
which Coq is based is the Calculus of Inductive Constructions (CiC) [38, 110]. In
Coq, a logical proposition is a type and a proof of this proposition is a lambda-term
that inhabits this type, known as the proof term. Types and proofs are written in
the same specification language, Gallina. Gallina can be used to write computations
and proofs about computations, both expressed as pure functional programs. The
Coq kernel, which is implemented in OCaml, is used to type-check Gallina programs
The TCB of Coq includes the Coq kernel as well as the OCaml compiler that is used
to compile the implementation, the OCaml runtime system, and the C compiler that
compiled the runtime system.

Certified Programming with Coq. But how does one go about building actual
verified software in Coq? Coq itself provides an interpreter for Gallina terms, which
is a part of the Coq kernel and implements term normalization required for type-
checking. This, though, is an inefficient way of running software built in Coq. The Coq
toolchain features an extraction mechanism [90, 89] that erases non-computational
content from a Gallina program, i.e., proofs and (dependent) types, and prints out
a functional program (written in OCaml, Haskell or Scheme). A program that has
been formally verified in Coq can be extracted to one of these languages, compiled,
and executed.

Extraction is a particularly useful tool that enables practical software verification.
It has been used to verify realistic, certified software, such as a verified C compiler [83],
an operating system kernel [55], and a web browser kernel [66]. However, both the Coq
extraction program and the compiler of the languages into which Coq is extracted
are unverified; hence, they belong to the TCB of the formally verification in Coq.

2

Bugs have been found in all parts of Coq’s TCB: the Coq kernel,1 the extraction
mechanism2 and the OCaml compiler, defeating the purpose of formally verifying
software in Coq.

CertiCoq [8] aims to reduce the TCB of Coq formal developments by providing
a compilation pipeline which is itself written and verified in Coq. CertiCoq targets
Clight, a large subset of the C language, that can be translated to machine code via
the CompCert verified compiler [84]. Targeting Clight gives us the opportunity to
take advantage of CompCert’s already proved-correct optimizations for an imperative,
low-level language (e.g ., register allocation), and focus on the efficient compilation
of a higher-order functional language to a first-order representation. Moreover, by
compiling to Clight we can target all of the architectures that CompCert already
does (PowerPC, ARM, RISC-V and x86). Apart from providing a verified extrac-
tion pipeline for Coq programs, CertiCoq could be used in the future in combination
with the MetaCoq [123, 124] project to further reduce the TCB of Coq programs.
MetaCoq provides a Coq implementation of the Coq kernel in Coq and a proof that
it correctly implements type checking in the Calculus of Inductive Constructions3

correctly). Currently, there is no way of extracting and running the verified im-
plementation of the type checker: extracting the verified type checker produces an
ill-typed term [124]. Compiling MetaCoq’s type checker with CertiCoq could be used
to produce a certified type checker for Coq.

It is worth mentioning that no one can ever hope for a provably foolproof proof
assistant, one without a TCB. First, from Göedel’s incompleteness theorems, the
soundness of the underlying proof system (assuming it is expressive enough) cannot
be proved in the system itself. We can, nonetheless, have an implementation of the
proof checking algorithm that is proved correct with respect to the specification of the
theory (e.g ., the MetaCoq typechecker). Even so, the knot cannot be tied: a verified
implementation of the theory needs a verified compiler and a verified compiler needs
a verified implementation of theory. It is clear that we should start with some amount
of trust [131]. But from a security standpoint, bugs in the Coq kernel or the OCaml
compiler are much harder to be exploited if these programs are used only to proof
check and compile specific programs (like the Coq kernel and the CertiCoq compiler),
as opposed to arbitrary programs picked by an adversary.

1A list of critical bugs in the Coq kernel compiled by the Coq developers can be found in https:

//github.com/coq/coq/blob/master/dev/doc/critical-bugs/
2Extraction erases dependent Coq types by introducing unsafe OCaml operations, a frequent

source of bugs in extracted Coq programs. Extracted Coq programs sometimes may fail to typecheck
in the extraction language or even cause segmentation faults and other runtime errors. Examples
of such bugs can be found in Coq’s bug tracker https://github.com/coq/coq/labels/part%3A%
20extraction. Xuan et al . [82] and Sozeau et al . [124] report verified artifacts for which extraction
fails to generate a valid OCaml file. In Chapter 8, one of the benchmarks used for the evaluation of
CertiCoq also fails to compile when extracted to OCaml because of a type error.

3Or, more accurately, in the Polymorphic, Cumulative Calculus of Inductive Constructions
(PCUIC).

3

https://github.com/coq/coq/blob/master/dev/doc/critical-bugs/
https://github.com/coq/coq/blob/master/dev/doc/critical-bugs/
https://github.com/coq/coq/labels/part%3A%20extraction
https://github.com/coq/coq/labels/part%3A%20extraction

1.2 Verified Compilation

Verified compilation is an idea that dates back to the 1960s; it has been studied for its
own sake or in combination with source-level formal verification frameworks in order
to decrease their TCB. The first attempt to prove a compiler correct is attributed to
McCarthy and his graduate student Painter [95] who provide a correctness proof for
a simple compiler for arithmetic expressions. Although the compiler is proved correct
with pen and paper, their ultimate goal was the mechanization of compiler correctness
proofs. Half a decade later, Milner and Weyhrauch [98] built a mechanically verified
compiler for an Algol-like language. The proof was carried out in Milner’s LCF
framework, the predecessor of the HOL-family proof assistants, which is based on
Scott’s logic for computable functions [97].

Since then, there has been remarkable progress in the area of verified compilation,
both in the scale of the compilers that are being verified and in the development
of mathematical techniques that are used to carry out compiler correctness proofs.
CompCert and CakeML, briefly described below, are two of the most influential ver-
ified compilers. They provide verified, optimizing pipelines for practical source lan-
guages that are comparable to industrial-strength compilers.

• CompCert [83, 86] is a landmark in modern compiler verification and demon-
strates that practical, optimizing compilers can be formally verified with
machine-checked proofs. CompCert achieves comparable performance to GCC
optimization level 1, with CompCert being roughly 10% slower than gcc -O1

on a PowerPC architecture. The TCB of CompCert includes (i) the formal
specification of the source and target language semantics (ii) the toolchain
with which CompCert is itself compiled (i.e., Coq’s extraction mechanism and
the OCaml compiler), and (iii) the kernel of the Coq proof assistant. Since
CompCert’s first development, several extensions have been made to support
concurrent computations (CompCertTSO [133]), different notions of compo-
sitional compiler correctness (e.g ., SepCompCert [73], CompCompCert [127],
CompCertX [54], CompCertM [122]), preservation of stack-space bounds [27],
and preservation of cryptographic constant-time behavior [20].

CompCert is important for demonstrating not only that verification in this
scale is feasible but also worthwhile. In a study that tested various C compilers
with Csmith, a randomized test-case generation tool, CompCert was the only
compiler for which Csmith could not find any miscompilation errors [140].4

• CakeML [130, 129] is a verified, optimizing compiler for a large subset of the
ML language. The implementation and verification of CakeML are carried out

4 This study discovered a few bugs in the unverified portions of CompCert’s front end. The bugs
were fixed and, in addition, the CompCert team has extended the verified portion of CompCert’s
front end to include a verified parser [71]. Another bug was found that was due to misunderstanding
of the PowerPC semantics. The authors of the study write: “As of early 2011, the under-development
version of CompCert is the only compiler we have tested for which Csmith cannot find wrong-code
errors.” [140, Section 3.1]

4

in the HOL4 theorem prover. CakeML is unique in that it is bootstrapped
inside the logic of the HOL theorem prover [79]. Using the technique of proof-
producing synthesis [103], the compiler definition, expressed in HOL, is trans-
lated to a CakeML program, represented as abstract syntax in HOL, producing
a proof that the semantics of the CakeML program correspond to the HOL
definition of the compiler. Then, the application of the compiler to its CakeML
abstract-syntax representation can be evaluated within the logic to produce
binary code that has provably the same operational behavior as the CakeML
abstract-syntax definition of the compiler.

The Spectrum of Verified Compilation. Broadly speaking, a compiler is correct
if the compiled program preserves the meaning of the source program. The source
program can be assigned meaning abstractly, in a machine-independent way, by a
formal semantics (e.g ., structural operational semantics). A compiler also assigns
meaning to a source program by mapping it to a target program. The target pro-
gram can be executed on a machine, giving concrete meaning to the source program.
The meaning of the target program can also be described abstractly, with a formal
semantics that provides a mathematical model of the concrete behavior of the pro-
gram. The goal of compiler correctness is to prove that for any source program, the
target program obtained by compilation correctly models the behavior of the source
program, according to the formal semantics of the source and target languages. This
is typically captured by a behavioral refinement specification: a compiler is correct
if the observable behaviors prescribed by the formal semantics of the target program
are included in the observable behaviors prescribed by the formal semantics of the
source program. This guarantees that all the behaviors that can be exhibited by the
target program are valid behaviors of the source program.

There are different degrees to which the semantic definition of the source language
captures the behavior of the program. When a program runs on a computer, we can
observe far more than the result of the computation (or the absence thereof). We
can observe how much time the program needs to compute the result, how much
memory it consumes, how it affects the CPU usage, the power consumption, the
microarchitectural state, and so on. Different compiler correctness specifications can
vary vastly in both the set of behaviors that are modeled by the semantic definitions
used and the assumptions under which they guarantee preservation of meaning. Some
aspects of frequently used compiler correctness notions are outlined below.

• Whole-program correctness is the most straight forward notion of compiler
correctness. It asserts that when a program is compiled as a whole, the meaning
of the program is preserved. A whole program is a program that is closed, that
is, it has no references outside its own code. The initial version of the CompCert
development as well as the CakeML compiler are verified with respect to whole-
program compilation.

However, real programs are hardly ever stand-alone units. In most real-world
situations, program modules are compiled separately and linked together at the
target level. A program might use libraries that are compiled separately with the

5

same or different compilers (or the same compiler with different optimization
levels), or call a routine written in an entirely different language through a
foreign-function interface (FFI). In these situations whole-program compiler
correctness does not apply.

• Compositional compiler correctness extends whole-program correctness by
allowing the specification of the behavior of program modules that are compiled
separately and linked at the target level. Compositional compiler correctness,
as the name suggests, is concerned with proving semantic preservation for each
of the compiled modules separately and composing these specifications to de-
rive a specification for the whole target program, after linking. Compositional
compiler correctness is a challenging verification problem and different solutions
have been suggested in the literature that vary in strength, complexity and do-
main of application. There is a spectrum of compositional compiler correctness
theorems, depending on the assumptions that are made about the separately
compiled modules. Examples of compositionally verified compilers along this
spectrum include:

– SepCompCert [73] allows linking of modules that have been compiled sep-
arately with CompCert, but perhaps using different optimizations levels.

– PILSNER [104], a verified compiler for an ML-like language, supports link-
ing with modules that are expressible in the same source language. This
includes programs compiled with PILSNER, programs that are written in
the same language but compiled with other compilers (verified with the
same methodology), and even hand-written target programs that provably
refine the behavior of some source program.

– CompCertM [122] supports multi-language linking, i.e., linking of modules
that are compiled from different source languages.

Patterson and Ahmed [108] characterize the spectrum of compositional com-
piler correctness and provide a general statement for compositional compiler
correctness.

• Preservation of quantitative properties. So far, we have implicitly as-
sumed that the compiler correctness theorem asserts that the compiler pre-
serves only the result of the computation.5 However, programmers commonly
reason about the asymptotic behavior of a program with respect to computa-
tional resources according to some cost model for the source language. Fail-
ure to preserve properties such as the asymptotic running time or space of a
program are considered bugs in compilers. Such compiler bugs are not uncom-
mon: JavaScript’s V8 closure representation can prevent memory from being
reclaimed by the garbage collector, introducing memory leaks [51, 46]. A bug in

5Depending on the language, the result of a computation can be either a value (common in pure
functional languages), a machine state, or a trace of events (common in languages with imperative
features and side-effects).

6

GCC [78] can prevent objects in C++ from being properly destroyed in certain
situations, also resulting memory leaks.

In recent years, there has been an increasing interest in verifying that compil-
ers preserve resource bounds. CompCert’s proof has been extended to include
verification of stack-space bounds [26] and guarantee that memory consump-
tion is preserved through compilation [24]. In functional languages, which are
commonly garbage collected, the problem of defining a space cost model and
verifying that it is preserved through compilation becomes significantly harder.
It has been studied for individual transformations [99, 107, 28] and also, very
recently, for an end-to-end verified compiler [53].

The correctness theorem for the CertiCoq asserts that both terminating and diver-
gent behaviors of the source program are preserved to the target program. Although
well-typed Gallina programs are always terminating, the middle-end pipeline of Certi-
Coq aims to provide a general compilation pipeline for functional languages that allow
nonterminating source programs to be expressed. The theorem of CertiCoq applies
to whole-program compilation as well as separate compilation of programs through
pipelines that go through the same series of intermediate languages. To obtain a com-
positional compiler correctness theorem, I develop a novel technique for lightweight
compositional compiler correctness. The framework supports compositional compiler
correctness with the restriction that the pipelines involved must go through the same
series of intermediate languages.

In the second part of the thesis, I extend the proof framework so that it can be
used to show that time and space bounds are preserved by transformations. I apply
this extended framework to show that the closure conversion pass of CertiCoq is safe
for time and space.

1.3 Compiling Functional Languages

A compiler for Gallina not only has to be correct, but it should also generate efficient
code. Specifically, the performance a Gallina program compiled with CertiCoq and
CompCert should not be much worse than the performance of the program when it is
extracted to OCaml and compiled it with OCaml compiler. An optimizing compiler,
however, is a strictly more complicated program than an nonoptimizing one. And as
software becomes more complicated, so does its proof of correctness. To that end,
the design of a verified compiler should facilitate both verification and production of
efficient code.

Functional languages, like Gallina, support first-class functions, allowing functions
to be treated as any other form of data in the program. In such languages, functions
can be higher-order: they can take functions as arguments or return functions as a
result. Moreover, functions can be assigned to variables or stored in data structures,
need not be named, and can be defined at any point inside a program. First-class
functions are both a blessing and a curse: they add a lot of expressiveness to the

7

source language but they introduce implementation difficulties and have been asso-
ciated with high runtime costs. When compiling functional languages to low-level
imperative languages without such features, like assembly, first-class functions need
to be implemented using first-order representations.6 But the combination of higher-
order, nested functions with lexical scoping complicates the runtime representation of
functions that now have to become converted to closures. In addition, multi-argument
functions in higher-order languages are curried, taking one argument at a time and re-
turning a function that accepts the next argument. Compilers for functional languages
put a lot of effort in optimizing the representation of functions by performing efficient
closure-conversion transformations that optimize the representation of closures, and
uncurrying transformations that introduce proper multi-argument functions.

Closure Conversion. When functions are nested they can refer to variables that
are not their own parameters or local variables, but free variables that are defined
in the scope of one of the enclosing functions. Since functions can flow (through
parameter passing or function return) to arbitrary scopes where their environment
is not available, their representation needs to contain information about the values
of their free variables. Compilers commonly do that with a closure-conversion trans-
formation7 that compiles functions to closures : pairs of the function code and the
function environment that contains the values of the free variables of the function.
Closures are an expensive representation for both time and space: they need to be
constructed, stored in the heap of the program, accessed multiple times, and garbage
collected. To produce efficient code, compilers must carefully pick the functions that
need to be closure converted and their closure representations. In Chapter 4, I discuss
in more detail efficient closure allocation strategies.

Uncurrying. In the higher-order view of functions, functions are curried : a multi-
argument function is just a function-returning function that takes only one argument
at a time, allowing the function to be partially applied. When compiling a functional
language, multi-argument functions should be introduced to avoid the performance
overhead of successively applying n-ary functions and allocating a closure for each
intermediate function return.

This thesis is concerned with building and verifying an optimizing middle-end
pipeline for CertiCoq that is aimed at efficiently compiling an untyped, higher-order
functional language (with first-class, curried functions) to subset of the language
that is closure-less and flat-scoped. In this subset of the language, functions that
are passed as parameters and returned as results can be implemented solely using
function pointers and do not require any additional runtime information. In this

6Technically, some limited form of higher-order functions can be implemented in low-level lan-
guages like C and assembly using function pointers. I consider this a first-order representation since
the object that is passed around is effectively an address.

7Alternatively, some compilers (e.g ., MLton [139]) perform a defunctionalization pass [41].

8

thesis, I refer to this subset of the language as first-order since it can be mapped
directly to a first-order language.

The optimizing pipeline uses an A-normal form (ANF)8 intermediate language
(henceforth λANF). Through a series of modular λANF-to-λANF transformations, the
pipeline compiles away first-class functions, introduces multi-argument functions, im-
plements efficient closure allocation strategies, and performs additional code simplifi-
cation and optimization. The pipeline is built around the following design principles.

Principle 1: Separation of Concerns. The CompCert compiler for C provides
verified and reasonably efficient code generation for a first-order imperative language.
By targeting CompCert, we can focus on the task of efficiently compiling a higher-
order functional language to a first-order representation.

Principle 2: Compilation by Program Transformation. Following a
compilation-by-program-transformation approach [75] we employ a number of
transformations to compile a higher-order language to a closure-less, flat scope subset
of the same language. The output of the λANF pipeline can be the translated to
different back ends. So far, CertiCoq only has a C back end but targeting other back
ends, like LLVM [81] or WebAssembly [58],9 would also be possible.

Principle 3: Modularity. Optimizations in the λANF pipeline are the result of the
interaction of small, cooperating program transformations rather than monolithic all-
at-once transformations. Apart from facilitating maintenance and extensibility, this
design is particularly suitable to formal verification.

1.4 Summary of Contributions

In this thesis, I present the implementation and verification of a multi-pass optimiz-
ing pipeline for the CertiCoq compiler. The optimizing pipeline operates on the λANF
intermediate representation and consists of seven distinct λANF program transforma-
tions. The λANF pipeline advances the state of the art in optimizing verified compilers,
by implementing more efficient strategies for closure allocation.

The verified pipeline aims to provide a practical, verified optimizing pipeline for
compiling functional languages. The λANF intermediate representation is a general
intermediate representation that can be used to compile meaningful subsets of general-
purpose functional languages like ML and OCaml. With modest extensions (described
in Chapter 3) it can scale to more diverse language features like references and arrays.
The output of the λANF middle-end pipeline can be compiled to different backends. The
modular and extensible design of the λANF pipeline and the λANF verification framework
allows new optimizations to be easily added and verified.

8A more in depth discussion about functional intermediate representations is given in Chapter 3.
9WebAssembly currently lucks support for memory management, although there are proposals

for adding such feature [45, Chapter 4]. Currently, to target WebAssembly from CertiCoq, we would
have to implement a garbage collector in some other language (e.g ., C) and compile it to Wasm.

9

To verify the pipeline I develop a framework based on logical relations that involves
the following novel technical contributions.

• The logical relations used are extended with relational pre- and postconditions
that can be used to specify instensional aspects of the source and target com-
putations in addition to their extensional behavior. I demonstrate how this
enables us to reason about the resource consumption of compiled programs
simultaneously with functional correctness.

• The framework supports reasoning about preservation of divergence. In their
standard formulation, logical relations do not support reasoning about preser-
vation of nonterminating behaviors. I show how the relational postcondition
enables us to extend the reasoning to nonterminating source programs.

• The framework supports lightweight verification of separate compilation with a
novel technique for composing logical relations. This technique can be used to
reason about linking programs compiled through the same series of intermediate
languages (but not necessarily the same transformations). It does not require
any modification to the logical relations, the theorem statements, and the proofs
of each transformation.

The logical-relation framework has been used by myself and others to verify the
λANF transformations of the CertiCoq compiler. The correctness theorem of the λANF
pipeline supports whole-program compilation, as well as separate compilation of pro-
grams compiled with different sets of optimizations.

In the second part of the thesis (Chapter 7), I use the logical-relation framework to
show that the closure conversion transformation of CertiCoq is not only functionally
correct but also safe for space. This is the first space-safety proof of a closure-
conversion transformation.

The results presented in this thesis are all mechanized in the Coq proof assistant.
The rest of the thesis is structured as follows:

• In Chapter 2, I give a broad overview of the CertiCoq compiler, including the
transformations before the λANF pipeline and the code generation phase.

• In Chapter 3, I present the λANF intermediate representation and its semantics.

• In Chapter 4, I describe the transformations of λANF pipeline and the optimiza-
tions they achieve.

• In Chapter 5, I describe the logical-relation framework and the compositional
compiler correctness framework, which is built on top of the logical relation
framework.

• In Chapter 6, I demonstrate the correctness results for the λANF pipeline.

• In Chapter 7, I extend the semantics of the intermediate representation to make
the memory model of the language explicit. I adapt the logical relation to the

10

new semantics and extend it to facilitate reasoning about the resource consump-
tion of programs. I apply the framework to show that closure conversion is safe
for space. This chapter was previously published as Closure Conversion is Safe
for Space by Paraskevopoulou and Appel [107].

• In Chapter 8, I provide an experimental evaluation of the CertiCoq compiler. I
compare the performance of Gallina programs compiled with CertiCoq to the
performance the same programs extracted to OCaml and compiled with the
OCaml compiler. I also evaluate the performance improvement of CertiCoq’s
optimizing closure strategies.

• In Chapter 9, I conclude by summarizing the presented work and discussing
open questions and possible future directions.

The verification of CertiCoq is a product of collaborative research. In Section
2.1.6, I give an detailed account of individual contributions to the development of
CertiCoq.

11

Chapter 2

CertiCoq Overview

In this chapter I give an account of the overall architecture of the CertiCoq compiler.
Although the rest of the thesis can be read and understood independently of CertiCoq,
this chapter aims to provide the context in which the presented work fits in. The goal
of the CertiCoq project is to build a verified and efficient compilation pipeline from
Coq all the way to assembly language, decreasing the trusted computing base of formal
verification in the Coq proof assistant. CertiCoq compiles a pure functional program
to Clight [25], a front-end intermediate representation of the CompCert compiler that
is a subset of the C language. The Clight program can be then compiled to different
architectures using the CompCert verified compiler.

There are three reasons for targeting C and compiling with CompCert instead
of targeting machine language directly. First, we can take advantage of a mature
verified compiler and its already proved-correct optimizations. Second, we target all
of the architectures that CompCert targets (PowerPC, ARM, RISC-V, x86 and x86-
64), while we only deal with platform-independent aspects of compilation. Third, by
emitting C we can link Coq programs with C programs that allow them to interact in
meaningful ways with their environment. Gallina, Coq’s specification language, is a
pure functional language: it can perform computations but it cannot interact in any
way with its environment. For the Coq program to get inputs and return its output to
the environment linking with some external drivers is required. In Coq’s extraction
pipeline this is achieved by linking the extracted Coq code with programs written
in the extraction language. In CertiCoq, this is done by linking with C programs
and using a foreign function interface (FFI) that provide facilities to construct and
destruct values in the format expected by the compiled program. In addition, this
architecture allows verified Coq programs to be part of larger unverified code bases,
providing a way to formally verify only critical components of a system.

This thesis is about only a part of CertiCoq: the part that compiles efficiently
a pure, untyped functional program to a first-order representation, which can be
directly compiled to a low-level imperative language. This is achieved with a multi-
pass optimizing pipeline (the λANF middle-end pipeline) that consists of a number of
source-to-source transformations. Before the λANF pipeline, CertiCoq employs a few
passes that perform simplification steps and an A-normal form (ANF) or continuation-
passing style (CPS) transformation to convert the program to the λANF intermediate

12

representation. The output of the λANF pipeline is then directly translated to C. The
compiled program is linked with a garbage collector, which is itself written and verified
in C [138], using the Verified Software Toolchain (VST) [11]. In the next section I
go over the different parts of CertiCoq in greater detail, and I explain how the λANF
pipeline fits in the CertiCoq pipeline.

2.1 The CertiCoq Pipeline and Runtime

2.1.1 The Pipeline

The CertiCoq pipeline is shown in Figure 2.1. The boxes represent the transforma-
tions that are applied to the code. The text above the arrows indicates the interme-
diate representation before and after a transformation is applied. All boxes represent
one-pass transformations except for the λANF pipeline that is a multi-pass optimization
pipeline (represented by a double border).

Coq ≡ L0

Reification Erasure
η-expand

constructors

η-expand
patterns

Let-bind
environment

CPS/ANF
tranformation

λANF
pipepline

C code
generation

Clight ≡ L6

PCUIC ≡ L1 λ� ≡ L2 L3

L3

L4 λANF ≡ L5 λANF

MetaCoq

Figure 2.1: The CertiCoq pipeline.

Reification. Starting from a Coq program, we use Template-Coq [9], a metapro-
gramming library for Coq that is part of the MetaCoq project [123, 124], to obtain
its deeply embedded representation inside Coq. The abstract syntax of reified Coq
programs represents terms in the Polymorphic, Cumulative Calculus of Inductive
Constructors (PCUIC), the core calculus of Coq. The language of PCUIC is a pure,
dependently typed lambda calculus, extended with projections, case analysis, let-
bindings, and (co)recursion operators (fix and cofix). Its static (typing judgment)
and dynamic semantics are formalized as part of the MetaCoq project.

Erasure. The next step erases non-computational content from a PCUIC term
(i.e., proofs and types) to produce a λ� term (pronounced lambda-box). We use a
verified erasure procedure that is part of the MetaCoq project. After erasure, proofs
and types are replaced by a new language constructor, namely �. After erasure, a
� can only be eliminated in function-application position. A � can be applied to

13

any argument and, according to its semantics, the application will evaluate to a �.
The � constructor is propagated through the CertiCoq pipeline and eventually gets
replaced with a function that consumes every argument that is being passed (that is,
fix f x = f) during CPS/ANF conversion.

Eta expansion of constructors. The next transformation in the pipeline takes
care of converting partially applied constructors to fully applied constructors and re-
moving the parameters of inductive types from constructors. Making constructors
fully applied is a necessary compilation step since in the low-level representation of
constructed values, there is no notion of partial constructor application. Furthermore,
this steps allows to remove parameters of an inductive type, which are computation-
ally irrelevant, from the constructors of the inductive type.

Full application is achieved by eta-expanding constructor applications: construc-
tors are wrapped in lambdas that fully apply the constructor to the number of ar-
guments that it expects. For instance, consider a partial application of the cons

constructor of the list data type: cons nat 1. The constructor is applied first to
the type parameter of the inductive type and then the element 1. It expects one
more argument, the tail of the list, which is not provided. After the transformation,
it will be converted to the partial function application: (λhd. λtl. cons hd tl) 1.
The constructor is now fully applied and the type parameter has been removed. The
redundant abstractions and applications that are generated by the transformation
when an argument of the constructor is already applied will be eliminated during
the λANF pipeline. For instance, the above example will be statically evaluated to
λ tl. cons 1 tl.

Eta expansion of patterns. In L2, the patterns in the branches of a match do
not explicitly bind the arguments of the constructors: the expressions in the branches
of the match are expected to be functions. For instance, in a pattern cons => e

of a match that discriminates a list of type list a, e is expected to have type
a→ list a→ b, where b is the return type of the match. This transformation will
make sure that e is in the form λhd. λtl. e′. This allows the following transformation
to easily strip the lambdas and add the bindings to the pattern. This is achieved by
converting e to λhd. λtl. e hd tl. Again, redundant lambdas (introduced when e is
already a lambda abstraction) will be eliminated by the λANF pipeline.

Let binding of environment. The current working version of CertiCoq will pro-
duce whole programs by prepending all external definitions to the beginning of the
compiled program. More precisely, when a Coq program is reified with Template-Coq
a pair is produced: a term together with its environment (i.e., a list of all definitions
that are referenced by the reified program). Earlier transformations have to be applied
to both the term and the environment. This transformation will explicitly let-bind
the environment at the beginning of the term, so that a whole program is produced.
In addition, it strips the lambdas from the expressions in the branches of a match,
and introduces patterns that explicitly bind the arguments of the constructor.

14

ANF/CPS transformation. After erasure, eta expansion of constructors and
patterns, and let-binding of environment, the code is translated via ANF or CPS
transformations to the λANF intermediate representation. This transformation is also
responsible for moving from De Bruijn indices (used by all previous intermediate rep-
resentations) to named binders. In addition, it removes (again) the explicit bindings
from the patterns of a pattern match moving to patterns that do not bind constructor
arguments. In λANF the arguments of a constructor must be explicitly projected. The
transformation introduce explicit projections at the beginning of the expression of
each branch that project the arguments of a constructor and bind them to variables.

λANF pipeline. The λANF pipeline, which is the subject of this thesis, is responsible
for efficiently compiling a pure lambda calculus with (mutually) recursive functions,
constructors, projections, and pattern matching to a first-order representation. The
λANF optimizing pipeline is described in detail in Chapter 4. The transformations
performed include closure conversion, lambda lifting, inlining, uncurrying, shrink-
ing (a transformation that performs shrink reductions [15, 23]), and dead parameter
elimination.

The input of the λANF pipeline is a purely functional program with nested function
definitions, closures (i.e., functions with free variables), and unary functions and
applications. The output of the λANF pipeline is a program with multi-argument
functions that are closed and defined at the top-level of the program that has only
two levels of scope: the global one containing all names of the top-level function, and
the local scope of each top-level function. In this program higher-order functions can
be implemented simply with function pointers and closures are constructed explicitly
in the code.

The λANF pipeline aims to be more general than the previous CertiCoq compila-
tion pipeline and can be seen independently from both the front-end and the code-
generation (back-end) parts of the compiler. One could easily write and (perhaps less
easily) verify code generators for other low-level representations such as LLVM [81]
or WebAssembly [58].1, would also be possible. The same goes for the front end
of CertiCoq that has been subject to many changes since the start of the CertiCoq
project, and will perhaps change more as CertiCoq is being actively developed. For
example, although currently CertiCoq compiles whole programs, the λANF pipeline is
built and verified with separate compilation in mind and does not assume that the
input will be a whole program.

C-code generation. The last phase of the CertiCoq compiler is the C-code gener-
ation that translates the output of the λANF pipeline to Clight. Coq values of inductive
types are represented in the heap of the C program following similar to the OCaml
object format (Section 2.1.2) and are stored in an isolated memory chunk, the Certi-
Coq heap. Functions are represented as C functions and are being passed around as

1As mentioned in the introduction, WebAssembly currently lucks support for memory manage-
ment [45, Chapter 4]. To target WebAssembly from CertiCoq, we would have to implement a garbage
collector in some other language (e.g ., C) and compile it to Wasm.

15

function pointers. The code generation phase (for the CPS subset of λANF) is described
in detail in Savary Bélanger’s thesis [21]. The code generator is also responsible for
generating calls to a garbage collector in appropriate sites. The generated program
will be then linked with the implementation of the garbage collector (Section 2.1.3)
and compiled with a C compiler.

2.1.2 Representation of Coq types in C

A Coq value of an inductive type is represented in C as an unsigned long integer2,
that represents either a pointer to an address in the CertiCoq heap or an integer.
Values are represented in memory using the OCaml memory model [61, Chapter 21].
A nullary constructor has an unboxed representation con siting of an integer that
uniquely identifies each unboxed constructor in an inductive type. Constructors of
non-zero arity are boxed and are represented as as pointers to the second word of a
block in the CertiCoq heap. A block consists of a word-sized header, followed by n
contiguous values that represent the constructor arguments, where n is the arity of
the constructor (after removing parameters of the inductive type). The header of the
block stores information about the size of the block, its garbage collection state, and
the tag of the constructor, that uniquely identifies a boxed constructor of an inductive
type. The representation of a boxed value is shown schematically in Figure 2.2.

header value[0] . . . value[n-1]

Figure 2.2: A block in the CertiCoq heap.

Boxed and unboxed values are distinguished using the last bit of their represen-
tation that is always 1 for integers and 0 for pointers.

2.1.3 Garbage Collection

CertiCoq uses a generational collector to deallocate dead objects from the CertiCoq
heap. In essence, the CertiCoq heap is an array of generations, each of them being
a linear memory region. The generated C code performs a garbage collection test
to determine if there is enough memory for all the allocations of the program until
the next garbage collection test, and invokes the garbage collector if there is not.
Garbage collection tests are placed upon function entry and after the return of (non-
tail) function calls in the body of a function.

As usual, the garbage collector determines the live portion of the heap by following
the chain of memory references from the set of live roots, which is the set of live

2CertiCoq can generate C in any of several C compiler configurations, in which pointers may be
32-bit or 64-bit, and the corresponding unsigned integer type may be unsigned long or unsigned long
long. In this discussion, we will use a “typical” C configuration in which pointers are 64 bits, and
represented as unsigned long long integers (also 64 bits).

16

variables (parameters and local variables) at a particular point in the execution of
the program. In traditional implementations of garbage-collected languages, the set
of live variables is found in the call stack of the program where the arguments of
a function call and local variables are stored. However, we do not have access to
the runtime environment of the C program, and therefore, we don’t have any way to
parse the C call stack. To circumvent this issue, we implement a shadow stack [96, 60],
which is a linked list threaded through the call stack of the C program. Each element
of this list is a shadow stack frame which is defined as local variable in the stack frame
of each active function. The shadow stack scheme works in the following way. Each
activation of a function will allocate in its stack a new shadow stack frame and will
link it to the shadow stack frame of the caller, which is passed to the function as a
parameter. Before each intermediate function call and garbage-collector call, we push
the variables that are live (i.e., variables that occur free in the rest of the program)
in the current shadow stack frame and pop them upon function return. At the end
of the function body, before the function returns or performs a tail call, the current
stack frame is discarded. When the garbage collector is called, it traverses the linked
shadow stack frames, that reflect the current call stack of the execution, in order to
find the set of live roots.

2.1.4 Foreign Function Interface

CertiCoq provides a foreign function interface that allows the user of the code that
has been compiled to C from Coq to construct and destruct the C representation of
a Coq datatype. Using the foreign function interface the user can construct inputs
for the compiled Coq program and inspect the output by, e.g ., writing iterators that
print out the result.

As an example, consider the list datatype in Coq:

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A -> list A -> list A

CertiCoq will automatically generate the following C functions to manipulate the
C representation of the Coq list type.

// Constructors
unsigned long long make_list_nil(void);
unsigned long long make_list_cons(unsigned long long,

unsigned long long,
unsigned long long *);

// Eliminators
unsigned int get_list_tag(unsigned long long);
struct nil_args *get_nil_args(unsigned long long);
struct cons_args *get_cons_args(unsigned long long);

// Struct representation of types
struct nil_args { };
struct cons_args {

unsigned long long cons_arg_0;

17

unsigned long long cons_arg_1;
};

The function make_list_nil returns the (unboxed) representation of the nil

constructor. The function make_list_cons takes three arguments: the head and tail
arguments of cons and a pointer to the address where the value should be stored.
It returns the pointer to the constructed block, which by convention is the address
where the first argument of the constructor is (i.e., the input address offsetted by a
word).

The function get_list_tag inspects a value and returns the tag of its outermost
constructor, which is the order in which it appears in the inductive type (in this
example, 0 for nil or 1 for cons. The functions cons_args and nil_args will return
the arguments of constructor put in a struct (also automatically generated) that has
as many fields as the constructor arguments.

2.1.5 Verification

Although this thesis presents an end-to-end verified, optimizing pipeline that is used
in the CertiCoq compiler, the end-to-end verification of the CertiCoq compiler is work
in progress. At the time when this thesis is written, the following are still ongoing
research.

• Completion of some front-end proofs and the code-generation proof.

• An end-to-end theorem for CertiCoq, composing the correctness theorem of the
λANF pipeline with those of individual transformations.

• An end-to-end theorem for CertiCoq + CompCert, composing the correctness
theorems of CertiCoq and CompCert.

• The connection of the verified garbage collection specification with the specifi-
cation of the correctness of the C-code generator.

• Extension of CertiCoq to handle separate compilation.

2.1.6 Collaboration

CertiCoq is the product of collaboration of many researchers across different institu-
tions. In the current working version of CertiCoq the following contributions were
made.

• Reification and erasure are part of the MetaCoq project and are implemented
and verified by the MetaCoq team [123, 124].

• The Eta expansion of constructors and patterns phases are implemented and
verified by Randy Pollack.

• The L3 to L4 transformation is implemented and verified by Matthieu Sozeau.

18

• The CPS transformation is implemented and currently being verified by Anvay
Grover. The ANF translation was implemented by me and it is not currently
verified.

• The proof framework that is used by myself and others to prove correct the λANF
transformations, was designed and mechanized in Coq by me.

• The overall design of the λANF pipeline is my own research. This includes λANF
and its semantics, presented in this thesis. λANF is based on a CPS interme-
diate representation initially designed by Andrew Appel and Greg Morrisett.
The implementation and verification of the λANF transformations was divided as
follows:

– Lambda lifting, closure conversion, hoisting, and inlining was implemented
and verified by me. The implementation of inlining was based on an ear-
lier implementation by Savary Bélanger. John Li proved that the closure
conversion program is correct with respect to the inductive definition of
closure conversion.

– The initial implementation of uncurrying is due to Greg Morrisett and
was later adapted by me and John Li. John Li did the correctness proof
of uncurrying.

– Dead parameter elimination was initially implemented by Katja Vassilev.
It was later adapted and currently being proved correct by me.

– Olivier Savary Bélanger implemented and verified the shrinking transfor-
mation as part of his PhD thesis [22, 21]. The early implementation and
proof of shrinking only handled the CPS subset of the current λANF IR.
They were later extended to the full fragment of λANF by me.

• The code generation phase was implemented and verified by Savary Bélanger
as part of his PhD thesis [21], and extended by Matthew Weaver. Again, the
implementation (but not the verification) was later extended by me to apply
to the full λANF language. These extensions include the implementation of the
shadow stack and the relevant extensions to the garbage collector.

• The implementation of the foreign function interface was done by Joomy Ko-
rkut.

2.2 Running CertiCoq

Currently, there are two ways of running the CertiCoq compiler on a Coq program: by
evaluating the application of the compiler within Coq or by extracting the compiler
to OCaml and compiling it with the OCaml compiler.

19

Evaluation in Coq. CertiCoq can be invoked on a Coq program within the Coq
interactive environment and evaluated using the term reduction mechanism that is
part of the Coq kernel. To do so, one can use the Template-Coq plugin to quote a
Gallina program and evaluate the application of the compiler on the quoted program.
The output, a Clight AST, can be then printed to a file (with the use of a Coq plugin)
and compiled with a C compiler. However, evaluating the application of CertiCoq
within Coq can be very inefficient even for small programs and it will raise a stack
overflow for larger programs.

The CertiCoq plugin. Alternatively, the CertiCoq compiler can be extracted
to OCaml, compiled with the OCaml compiler, and invoked within Coq as a Coq
plugin. The extracted CertiCoq compiler can be invoked using the command

CertiCoq Compile program.

where program is the identifier of the program intended for compilation. The com-
mand will generate a C file with the compiled code and a C file that contains the
corresponding glue code. By default, the compiler will use the CPS translation. To
compile a program with the direct ANF translation the flag -direct can be used.

Bootstrapping Ideally, the CertiCoq compiler will be used to compile itself, re-
moving the dependency on the unverified extraction plugin and the OCaml compiler.
Currently, there are technical issues that prevent us from quoting and using the era-
sure function on the erasure function itself. Therefore, at the moment, it is not
possible to compile CertiCoq with CertiCoq. If these issues are overcome, we could
possibly have a bootstrapped compiler.

To bootstrap CertiCoq, we could evaluate the application of the CertiCoq compiler
on the quoted CertiCoq compiler using the term reduction mechanism that is part of
the Coq kernel. Evaluating such term inside Coq will be costly for time and memory,
but for a sufficiently large stack limit it could, in principle, terminate. That would
allow us to obtain a compiled version of the compiler that does not depend on the
unverified extraction.

As outlined in the introduction, it is not be possible to completely remove the
OCaml compiler from the TCB of formal verification in Coq. However, bootstrapping
CertiCoq would allow us to completely remove the unverified extraction program from
the TCB of formal verification in Coq.

20

Chapter 3

Intermediate Representation

In this chapter, I describe the λANF intermediate representation that is used throughout
the CertiCoq middle end, after the CPS/ANF conversion until the C-code generation
phase. The next chapter, that describes the λANF transformations in detail, makes
use of the formal syntax of the language. In Chapter 5, I will use the semantics
presented here to define the relational framework that is used to verify the pipeline
transformations.

3.1 Functional Intermediate Representations:

CPS vs. ANF

The choice of the intermediate representations (IRs) in a compiler pipeline is key to
the design of a good compiler. Compilers usually employ a number of intermediate
representations, gradually moving from higher-level to lower-level IRs. For instance,
the IR that is used for type-checking, which is commonly one of the very first steps
in the front end of a compiler for a typed language, is a high level representation that
preserves almost all of the constructs of the source language. As high level abstrac-
tions are compiled away, the intermediate representations become more and more
low level, until there is a direct correspondence between the IR and the instruction
set architecture (ISA) of the target machine. Two common low-level functional in-
termediate representations, suited for the purposes of the λANF pipeline of CertiCoq,
are the CPS (continuation-passing style) and the ANF (administrative normal form)
languages. In fact, the question of whether CPS or a direct-style intermediate rep-
resentation, like ANF, is more adequate for compilation is a long-standing debate in
the programming languages research community [48, 18, 76, 92, 47, 36].

Continuation-passing style is a way of writing programs that makes control flow
and data flow explicit: all intermediate computations have to be passed as arguments
to their continuation that specifies what is the next computation to be performed. As
a result, all intermediate results are named, and functions never return: they simply
pass the control to their continuation that is passed as an extra argument. CPS as a
compiler intermediate representation was first used in RABBIT [125], the first com-
piler for Scheme and one of the earliest implementations of a higher-order, lexically

21

scoped functional language. Other examples of compilers that use a CPS intermedi-
ate representation is the ORBIT [2] compiler for Scheme, early implementations of
the SML/NJ compiler [10] compiler, and the SML.NET compiler [76]. From a com-
piler implementation perspective the use of CPS has many advantages. CPS encodes
the evaluation strategy in the structure of the term, and hence, as Plotkin famously
proven by Plotkin’s indifference theorem [112], the result of evaluation of CPS terms
is independent of the evaluation strategy used. As a result, full beta reduction is
sound in CPS, which gives strictly more opportunities to perform inlining optimiza-
tions compared to direct-style representations where inlining has to respect evaluation
strategy of the source. In addition, a lot of useful optimizations, like tail-call elimina-
tion, amount to function inlining in a CPS intermediate representation [10], making
CPS a very appealing IR to perform optimizations. In a CPS-converted program no
function ever returns, it just passes the control to its continuation. Therefore, CPS
lends itself to a simple implementation by a stackless abstract machine. Put differ-
ently, CPS has a very simple implementation using heap-allocated activation records,
that eliminates the need for a runtime stack, making both the implementation of the
compiler and the runtime simpler.

Despite its virtues, CPS is not a very popular choice among modern compilers.
Some possible reasons are that direct-style programs can be read and understood
more easily, and some optimizations, like common subexpression elimination, are
much harder to perform on CPS. Another reason is that in the straightforward im-
plementation of CPS there is no call stack and therefore all continuation closures
must be heap allocated. Heap allocated activation records are traditionally seen as
more expensive than stack allocated ones due to worse locallity of reference and its
increased need for garbage collection.1

ANF is an alternative direct-style intermediate representation, proposed by Flana-
gan et al . [48], who suggested that ANF can be just as good as CPS for a compiler
intermediate representation and also avoid some of the nuances related to CPS. Flana-
gan et al . observe that performing CPS conversion, beta normalization, and the in-
verse CPS transformation, results in a program in A-normal form, that can be also
obtained by performing a set of A-normalization steps directly at the source term.
ANF is similar to CPS in that all intermediate expressions are named, making some
aspects of the control and data flow explicit, but without making explicit the notion
of continuations. Although its creators argue that ANF captures the essence of con-
tinuations, and optimizations in ANF can be expressed just as naturally as in CPS,
this later proved to be inaccurate [76, 115]. In particular, the ANF representation
is not closed under beta reduction, which complicates the application of function in-
lining. The problem is that after performing a beta reduction, the resulting term is
not necessarily in ANF form, and bringing it back to ANF requires performing some

1A recent study [47] suggests that the performance of stack vs. heap allocated activation records
depends on the language features. For sequential languages without advanced control features
the traditional C-like stack implementation seems to be the most efficient choice. Though it is
possible for heap allocated activation records in combination with generational garbage collection
to have performance comparable to that of stack allocated records [18], it involves complicated
implementation techniques [120, 17].

22

extra normalization steps. The situation gets more complicated when the language
involves conditionals or case analysis constructs where renormalizing the term intro-
duces a join point, which is a local continuation that captures the continuation of
the conditional and avoids code duplication. I will come back to the inlining problem
of ANF when I discuss the inlining transformation of λANF in Chapter 4. Moreover,
unlike CPS, in ANF function calls cannot be implemented simply as immediate jumps
and the implementation requires a runtime call stack. Despite these shortcomings,
ANF has gained a lot of popularity in compilers. Notably the Glasgow Haskell Com-
piler (GHC) uses ANF extended with a special syntactic construct that represents
join points as second class continuations allowing for more optimizations and more
efficient compilation [92].

For the CertiCoq middle-end pipeline we choose an ANF intermediate represen-
tation. However, our ANF representation is syntactically a superset of CPS and
therefore we can obtain λANF program with either direct-style or CPS conversion to
λANF. The transformations of the λANF pipeline are designed to apply to both direct
and CPS programs, so that the λANF pipeline is independent of whether direct or CPS
transformation was used earlier in the pipeline. Of course, choosing to compile with
CPS or direct-style ANF transformation suffers from the respective drawbacks of each
representation. If the compiled program is in direct style, the application of function
inlining is more restricted. On the other hand, compiling programs by converting
them to CPS form results in a large number of heap allocated closures and produces
less efficient code. The same code generation and the runtime implementations can
handle both ANF and CPS converted programs. Extending the code generation phase
and the runtime to handle ANF programs in addition to CPS was a non-trivial task
that required implementing a shadow stack. In Chapter 8, I compare the performance
of the code generated with direct-style ANF transformation with the performance of
code generated with CPS transformation, contributing with one more datapoint to
the CPS vs . ANF debate.

The rest of this chapter describes the syntax of the λANF intermediate representa-
tion and useful syntactic definitions (Section 3.2), and the semantics of λANF and some
of its useful properties (Section 3.3). The definition of the semantics is particularly
interesting from a technical prospective: it is a big step semantics tailored to allow
us to prove divergence preservation and it is parameterized by abstract notions of
resource and traces.

3.2 Syntax

Figure 3.1 shows the syntax of λANF. We fix two countably infinite sets Var and
Constr from which we draw names for variables and constructors. In the formal Coq
development we use the set of positive numbers for both sets. In λANF all intermediate
computations must be explicitly bound to a variable and all operations of the IR
can only refer to variables and cannot contain nested operations. Expressions in λANF
belong to one of the following syntactic categories.

23

(Variables) x, y ∈ Var

(Constructors) C ∈ Constr

(Expressions) e ∈ Exp ::= let x = C(y) in e Constructor
| let x = y.i in e Projection
| case y of [Ci → ei]i∈I Case
| fun f x = e1 in e2 Function def.
| let x = f y in e Function call
| f x Tail call
| ret(x) Return

(Values) v ∈ Val ::= C(v) | Clo(σ, fun f x = e)

(Environments) σ ∈ Env = Var⇀ Val

(Contexts) E ∈ Ctx ::= [·]
| let x = C(y) in E
| let x = y.i in E
| fun f x = e in E
| let x = f y in E
| fun f x = E in e
| case x of [C → e, Cj → E , C → e′]

Figure 3.1: The syntax of λANF.

Constructors. This construct applies a constructor to a list of arguments (that are
syntactically restricted to variables) and binds the resulting value to the variable x.

Projections. Similarly, this construct projects the i-th argument of a (constructed)
value and binds it to x.

Case analysis. Case analysis discriminates the value of a variable against a finite
set of constructors. Note that case analysis will only discriminate the outermost
constructor of the scrutinee but it will not bind the arguments of the constructor
to variables. The code of each branch is responsible for projecting the arguments of
the constructor with explicit projections. In typed source languages, it is common
to combine these into a match construct that is more easily typechecked; but our
untyped λANF has lower level combinational primitives to facilitate optimization and
code generation.

Function Definition. This construct defines a – possibly recursive – function.
In the mechanized Coq development, λANF supports mutually recursive functions as
well. To keep presentation simple, here I restrict the language to only include single
recursive functions.

24

Function Application. We distinguish two cases for function application: tail and
non-tail function calls. Tail calls are leaves in the abstract syntax tree and execution
will never return to the caller after the tail call. In non-tail function calls, the control is
returned to the caller after the function is finished executing and the result of function
application is bound to a variable This is exactly the difference between programs
in CPS and ANF forms: when we translate to the CPS subset of λANF, we never
generate non-tail function applications — and our transformations and optimizations
never introduce nontail calls into a program with only tail calls.

Return. This construct terminates the execution of an expression by returning the
value of a variable.

It is also useful to define the following types.

Environments and values. To define the semantics of the language, we need
notions of values (i.e., the result of evaluating a computation) and environments
(i.e., an evaluation state that keeps track of the intermediate results). A value can
be either a constructor applied to a (possibly empty) list of values, or a closure, a
pair of a function together with an environment. The environment is a partial map
from variables to values.

Contexts. We define a notion of 1-hole contexts that we use to formulate various
definitions. Context application, written E [e], forms an expression by filling e in the
hole position of E . It is useful to restrict the notion of contexts to binding contexts:
contexts that are strictly linear (no case analysis) with the hole at tail position. A
binding context (written in darker font in Figure 3.1), is a context without case-
analysis nodes or function-definition nodes with the hole at the function body. A
binding context E satisfies the predicate binding ctx(E).

For binding contexts, we can define an interpretation relation that given an envi-
ronment, evaluates a binding context and returns a new environment that contains
the bindings of that context. For example, consider a binding context let x =
C0() in let y = CS(x) in let z = y.1 in [·] where C0 is the constructor for zero and
CS the constructor for successor. It can be evaluated in an environment ρ to obtain
ρ[x 7→ C0(), y 7→ CS(C0()), z 7→ C0()]. This is not possible for unrestricted contexts;
we cannot, e.g ., interpret a context that has a case-analysis node at the top level.

Many λANF transformations generate binding contexts.2 It is useful to use the
context interpretation relation, which composes with the evaluation relation of the
language,3 to reason about this code.

Notice that by requiring all subcomputations to be bound to variables, the struc-
ture of the functional program resembles a low-level imperative language. We can eas-
ily image replacing let x = . . . in e constructs with assignments and sequencing op-
erations x := . . . ; e, to obtain a representation that is very close to assembly language.

2For example, closure conversion generates such contexts to project the code and environment
for the closure pair

3This property is formally stated in Section 3.3.3.

25

In fact, the only thing that prevents us from translating λANF directly to assembly lan-
guage (or another low-level IR, which in our case is Clight) is the presence of nested
functions that refer to bindings outside of the scope of their own definition. This is
one of the purposes of the λANF pipeline: efficiently compile away nested functions to
top-level function definitions, allocating closures when needed. After compilation we
will have a program that is in the form fun f1 x1 = e1 in . . . fun fn xn = en in emain,
where ei∈[1,n] and emain do not contain function definitions and the top-level func-
tion definitions do not have any free variables, except from references to top-level
functions. This first-order subset of λANF has the property that functions can be im-
plemented solely with function pointers. The compiler program can now be compiled
to C4 or assembly (though for the latter, we would also need register allocation to
produce efficient code).

3.2.1 Useful Definitions

Bound variables. An occurrence of a variable is bound if it is the binder of let
expression, a function name, or a function argument. The scope of a binder x in a let
expression let x = . . . in e is the expression e. In a function definition fun f x =
e1 in e2 the scope of the function name is both of the expressions e1 and e2, and the
scope of the function arguments x is just the function body e1. The set of bound
variables of an expression e (resp. context E) is denoted as bv(e) (resp. bv(E)).
Although formally these are two distinct definitions, to keep the paper presentation
simple I overload the same notation.

Free variables. A variable x is free in an expression e if it occurs in a non-bound
position and it is not in the scope of a binder with the same name. The set of free
variables of an expression e (resp. context E) is denoted as fv(e) (resp. fv(E)). A

term that has no free variables satisfies closed(e)
def
= (fv(e) ⊆ ∅)

Unique bindings. An expression e (resp. context E) has unique bindings, denoted
as ub(e) (resp. ub(E)), if all of its bound variables are distinct.

Substitution. I denote e{y/x} the substitution of variable x with variable y in
expression e. Note, that in λANF it is only possible to substitute variables with other
variables, and not expressions.

Well-scopedness. λANF programs are expected to adhere to some syntactic restric-
tion that will be preserved by λANF transformations. In particular, a well scoped λANF
term e (well scoped(e)) has the property of unique bindings (ub(e)) and the set of its
free variables is disjoint from the set of its bound variables (fv(e) ∩ bv(e) = ∅).

4Provided that the C compiler can handle efficient tail calls without growing the stack. Twentieth
century C compilers (generally) could not do this, but 21st-century C compilers can: gcc does a very
impressive job on tail calls, clang/LLVM does a good job, and CompCert does a rudimentary job,
allowing tail calls only when the callee has exactly the same number of parameters as the caller.

26

3.3 Semantics

The semantic definitions of the source and target languages are central to a compiler
correctness theorem. To show that some aspect of computation is preserved, it must
be captured by the semantics of both the source and target language. For the correct-
ness of the λANF pipeline we are interested in preserving two properties: (i) If the source
program terminates, so does the target program and the results of the computation
are logically related. (ii) If the source program diverges, so does the target program.
In Coq all functions are required to be terminating, which is syntactically enforced
by checking that each recursive call is made to a structurally smaller argument. This
is required to prevent logical inconsistencies (a non-terminating function can have
an arbitrary return type and hence it can be used to prove false) and also to keep
type checking decidable (type checking uses term normalization: if the normalization
function can diverge then so can type checking). We are nevertheless interested in
showing that divergence is preserved: the λANF could act as a general-purpose verified
optimizing pipeline for functional languages if extended with additional constructs
(e.g ., primitive operations). In addition, preservation of nonterminating behaviors is
an interesting problem from a compiler correctness prospective and I wish to demon-
strate the generality of the approaches presented in this thesis.

3.3.1 Big-Step vs. Small-Step Semantics.

Both small-step and big-step semantics are extensively used in programming lan-
guages theory. To motivate the choices in the semantic definition of λANF, let us look
at some important differences of small-step and big-step semantics.

Big-step (or natural) semantics. Big-step semantics relates a program with the
final result of its evaluation, and therefore, it can only capture terminating executions
of a program. A big-step semantics is particularly convenient for compiler correct-
ness proofs, but, in its basic formulation, it can only be used to show correctness of
compilation only for terminating programs.

Small-step semantics. A small-step semantics is defined using a notion of a one-
step reduction that can be used to form finite or infinite reduction sequences. There-
fore small-step semantics can be used to model terminating, diverging, and stuck
executions of programs. Small-step semantics can vastly complicate compiler correct-
ness proofs [88], but they allow proving that divergence is preserved.

Typically, a compiler correctness statement formulated using small-step semantics
states that, starting from related initial states, whenever the source programs takes
a step, the target program takes zero or more steps and the two resulting states are
also related. Since the transformation might reduce the number of steps, then there
might be steps in the source that do not correspond to any steps in the target (e.g .,
think of function inlining). Notice, however, that this correctness statement does
not guarantee divergence preservation: infinite reduction steps in the source might
correspond to a finite number of reduction steps in the target. This is commonly
referred to as the stuttering problem [86] and can be avoided by requiring that some

27

measure function over source program states is strictly decreasing whenever the target
performs zero steps. This provides an upper bound to the source steps that do not
correspond to a reduction step in the target. Therefore, one can derive that infinite
reduction sequences in the source correspond to infinite reduction sequences in the
target.

There are different approaches in the literature that can be used to reconcile
big-step semantics and diverging programs.

Coinductive big-step semantics. One approach to model diverging executions is
to use an additional coinductive big-step judgment to form infinite evaluation deriva-
tions [39, 88]. The weakness of this approach is that two separate semantic preserva-
tion proofs have to be done: one for terminating and one for diverging executions. To
avoid writing two separate evaluation judgments, coevaluation [88, 33] can be used
that interprets the standard evaluation relation coinductively. This is viewed as a
less satisfactory solution as it does not capture all nonterminating executions and it
is not very well behaved in semantic preservation proofs.

Functional big-step semantics. The CakeML compiler handles divergence
preservation by using functional big-step semantics [105]. The semantics is fuel-based
and, similar to ours, throws an out-of-time exception when the fuel value is not
enough to evaluate the next execution step. Unlike the semantics of λANF, it is
defined as an interpreter rather than an inductive definition. CakeML uses functional
big-step semantics to show that nontermination is preserved: if the source term times
out with some fuel value then so does the target term for the same fuel value. Of
course, this does not always hold: a program may timeout for some fuel value f ,
but after program optimization, f might be enough to execute the target program.
CakeML works around that by introducing a special Tick instruction whose only
effect is to reduce the fuel. It is introduced by transformations whenever some
instruction that winds down the clock is optimized away. The drawback is that an
additional Tick construct is introduced in the IRs of the compiler and is propagated
all the way to the back end of the compiler. An additional tick-erasure pass has to
be made at the final compilation step, and of course the corresponding proof. The
proof is a backward simulation stating that the behavior of a program with ticks
erased is subsumed by the behavior with a program with ticks.

My solution to the divergence-preservation problem is inspired by both the
CakeML approach and the solution to the small-step stuttering problem. Similar to
CakeML, I use a fuel-based big-step semantics that will time-out whenever there is
not enough fuel. However, I avoid the use of ticks by showing that whenever the
source execution times out for some fuel value c the target times out for some fuel
value c′, such that c ≤ f(c′), for some function f . It is then easy to show that if f
has the property5 f(x) ≤ f(y)⇒ x ≤ y then divergence is preserved.

Finding an upper bound for the execution cost of the source in terms of the
execution cost of the target is not always easy. To that end, apart from the fuel, the
semantics keeps track of the an execution trace that provides additional information

5This inequality holds iff f is strictly monotonic.

28

for (e.g ., number of a particular type of evaluation steps) that can be used to express
the upper bound. The trace will be used to show that the inlining transformation
preserves divergence. For the rest of the transformations using just fuel is enough.

3.3.2 Formal Definition

To define our notion of semantics we use a fuel-based big-step definition. The eval-
uation relation is written (σ, e) ⇓f t r and reads as follows. Given a configuration
(σ, e) ∈ Env × Exp and a fuel value f , evaluation produces a result r that can be
either a value or an out-of-time exception:

r ::= Res(v) | OOT

Furthermore, it returns an execution trace t that captures certain aspects of the
computation. Notice that both the trace and the fuel have a similar purpose: they
profile aspects of the computation that are not related to the final result. Their
difference is that the semantics will inspect the fuel value and it will return an OOT
exception if there is not enough fuel to carry out the computation. On the other
hand, the trace is never inspected and it is constructed “on the side” of the main
computation.

Monoids

In the semantic definition both notions of fuel and traces are abstract, and can
be instantiated later on with different cost and trace models. I achieve that by
parameterizing the semantics with two commutative monoids: 〈F , 〈+〉F , 〈0〉F〉 and
〈T , 〈+〉T , 〈0〉T 〉 for the fuel and the trace type respectively. For each of them we
have that the binary operation is associative and commutative and has the zero as
its identity element. Each monoid gives rise to a preorder:

x ≤S y
def
= ∃z, y = z 〈+〉S x with S ∈ {F , T }

Furthermore, I assume that there is a way of generating “elementary” elements
for the two sets F and T . I assume two functions 〈·〉F : exp→ F and 〈·〉T : exp→ T
that map expressions of the language to F and T . The fuel and the trace monoids
are the free monoids generated by the codomains of 〈·〉F and 〈·〉T respectively.

For the F monoid, I also assume a strict partial order <F , which is used by the
semantics to check if there is enough fuel to perform an execution step. The ordering

29

<F must satisfy the following axioms.6

∀ x y z, x <F y → y <F z → x <F z (Transitivity)
∀ x, x 6<F x (Irreflexivity)
∀ x, x 6<F 〈0〉F (〈0〉F is the least element)
∀ e x, 〈0〉F <F 〈e〉F (〈e〉F is strictly greater than 〈0〉F)
∀ x y z, x <F y ↔ x 〈+〉F z <F y 〈+〉F z (〈+〉F preserves and reflects

the ordering)
∀ x y, x <F y ∨ y ≤F x (Decidability)

When referring to the binary operation, the identity element, the generator func-
tion, or the orders of the monoids I will often drop the subscript when it is clear from
the context to which of the two monoids I am referring.

In Chapter 5, where I set up the relational framework for proving correctness I
will also make use of a homomorphism ↑ : F → N that must satisfy the following.

∀ x y, ↑(x 〈+〉F y) = ↑x+ ↑y (↑ preserves 〈+〉F)
∀ x y, ↑(〈0〉F) = 0 (↑ preserves 〈0〉F)

Monoids (especially partial commutative monoids) have been traditionally used
to give a general model to both resources and traces in the semantics of programming
languages. For example, resource monoids are used in Iris [72] as a generic way to
express protocols on shared state and in cost analysis [62] to express generically the
composition of resource consumption.

The fuel and trace monoids are kept abstract during semantic preservation proofs.
They are only need to be instantiated at the top-level, when one wants to derive the
divergence preservation theorem.

Example 3.1 (Fuel Monoid)
For the purposes of this thesis, I will instantiate the fuel monoid with 〈N,+, 0〉. There
are different generators than can be used, that define a different cost model for the

language. In order to show divergence preservation, it suffices to consider 〈e〉 def= 1.

Example 3.2 (Trace Monoid)
I will use the trace monoid to profile the number of different kind of steps that a
program takes. These are then used to form an upper bound for fuel consumption
of the source program. I will use the trace monoid 〈N × N,+, (0, 0)〉, where + is
pairwise addition. The first component keeps track of the non-application steps, while

6I could have also taken x <F y
def
= ∃z, z 6= 〈0〉F ∧ y = z 〈+〉F x. This would be sufficient to

prove transitivity, but I would again have to make assumptions about the underlying structure so
that all the required axioms are provable.

30

the second one the application steps. The corresponding generator is:

〈let x = C(y) in e〉 def= (1, 0) 〈let x = y.i in e〉 def= (1, 0)

〈case y of [Ci → ei]i∈I〉
def
= (1, 0) 〈fun f x = e1 in e2〉

def
= (1, 0)

〈let x = f y in e〉 def= (0, 1) 〈f y〉 def= (0, 1)

〈ret(x)〉 def= (1, 0)

Semantics

The inductive definition of the semantics is shown in Figure 3.2. The ⇓ relation is
defined simultaneously with an auxiliary relation . Intuitively, the rules of ⇓ are
responsible for the fuel and trace profiling, whereas is responsible for performing
the evaluation step. This avoids obfuscating the evaluations rule of each constructor
with additional premises that manipulate the fuel.

The first rules are the introduction (rule Constr) and elimination (rules Proj
and Case) of constructed values are straightforward. Similarly the rule Fun in-
troduces a closure value, and rules Let-app, Let-app-OOT and App eliminate a
closure value with function application. Rule Let-app prescribes what happens when
the function body evaluates to a value, whereas rule Let-app-OOT prescribes what
happens when evaluating the function body results in an OOT. Rule Ret terminates
a computation by returning the value that corresponds to the returned variable. Rule
OOT throws an OOT exception if the value of the fuel is less than the fuel required
for the evaluation of the outermost constructor of the expression. Rule Step invokes
the auxiliary relation for the evaluation of the topmost constructor, and adjusts the
values of the fuel and the trace.

For evaluation of closed programs in the empty environment I will write e ⇓c t r,
dropping the fuel and trace superscripts when they are irrelevant.

Divergence

Diverging programs are defined using the evaluation relation. In particular, a program
diverges if for all values of the fuel, evaluation raises an OOT exception with some
trace value.

(σ, e) ⇑def= ∀ c,∃f, (σ, e) ⇓c f OOT

Context Interpretation

The evaluation semantics extend naturally to the interpretation of binding contexts.
The relation is written

(σ, E) Bc t o

where
o ::= Res(σ) | OOT

31

σ(y) = v (σ[x 7→ C(v)], e) ⇓c t r

(σ, let x = C(y) in e) c t r
Constr

σ(y) = C(v1, . . . , vj, . . . , vn) (σ[x 7→ vj], e) ⇓c t r

(σ, let x = y.j in e) c t r
Proj

σ(x) = Ci(v) (σ, ei) ⇓c t r

(σ, case x of {Ci → e}i∈I) c t r
Case

(σ[f 7→ Clo(σ, fun f x = e1)], e2) ⇓c t r

(σ, fun f x = e1 in e2)
c t r

Fun

σ(f) = Clo(σg, fun g z = eg)
σ(y) = v (σg[z 7→ v][g 7→ Clo(σg, fun g z = eg)], eg) ⇓c1 t1 Res(v1)

(σ[x 7→ v1], e) ⇓c2 t2 r

(σ, let x = f y in e) c1〈+〉c2 t1〈+〉t2 r
Let-app

σ(f) = Clo(σg, fun g z = eg)
σ(y) = v (σg[z 7→ v][g 7→ Clo(σg, fun g z = eg)], eg) ⇓c t OOT

(σ, let x = f y in e) c t OOT
Let-app-oot

σ(f) = Clo(σg, fun g z = eg)
σ(y) = v (σg[z 7→ v][g 7→ Clo(σg, fun g z = eg)], eg) ⇓c t r

(σ, f y) c t r
App

σ(x) = v

(σ, ret(x)) 〈0〉 〈0〉 Res(v)
Ret

i < 〈e〉F
(σ, e) ⇓i 〈0〉 OOT

OOT

(σ, e) c t r

(σ, e) ⇓c〈+〉〈e〉 t〈+〉〈e〉 r
Step

Figure 3.2: Evaluation semantics of λANF.

Given an environment σ, it interprets the binding context E to obtain a result o
that can be either an environment or an out-of-time exception. A context cannot
be interpreted if it is not a binding context. Analogous to ⇓ and , B is defined
simultaneously with an auxiliary relation I. The rules closely follow the rules of the
evaluation relation and are not shown.

32

3.3.3 Properties of the Semantics

I describe some important properties of the semantics. The proofs of these theo-
rems are fully mechanized and hence omitted, unless they elucidate some particular
methodology.

The following lemma asserts that every computation times out with an empty
trace when evaluated with zero fuel.

Lemma 3.3 (Evaluation with zero fuel)
For all σ and e, we have (σ, e) ⇓〈0〉 〈0〉 OOT.

The semantics is deterministic in the following sense: whenever we have two ter-
minating executions of the same configuration, both the trace and the fuel must be
the same.

Lemma 3.4 (Determinism (termination))
Let (σ, e) ⇓c t Res(v) and (σ, e) ⇓c′ t′ Res(v′) be two terminating evaluation derivations.
Then c = c′, v = v′ and t = t′.

Furthermore, if a configuration terminates with some fuel a trace value then for
all strictly smaller values of fuel there exists some trace, which is a subtrace of the
original one, such that the configuration times out.

Lemma 3.5 (Evaluation with less fuel)
Let (σ, e) ⇓c t Res(v) be a terminating derivation. Then for all c′ <F c there exists a

trace t′ ≤T t such that (σ, e) ⇓c′ t′ OOT.

Notice that it is not possible to obtain an evaluation derivation for values of fuel
strictly greater than the one of the terminating execution.

Lemma 3.6 (Evaluation with more fuel)
Let (σ, e) ⇓c t Res(v) be a terminating derivation. Then for all c′ such that c <F c

′,

trace t′, and result r, the is no derivation (σ, e) ⇓c′ t′ r.

Incomplete evaluations are monotonic in the fuel value in the sense that given
an OOT-evaluation of a program, we know that for any smaller value of the fuel the
evaluation will time out giving a subtrace of the original trace.

Lemma 3.7 (Monotonicity (OOT))
Let (σ, e) ⇓c t OOT be an OOT-derivation. Then for all c′ ≤F c there exists a trace

t′ ≤T t such that (σ, e) ⇓c′ t′ OOT.

Given two OOT-evaluations of the same configuration, we know that the one with
the smaller fuel will also produce a smaller trace.

Lemma 3.8 (Monotonicity (OOT))
Let (σ, e) ⇓c t OOT and (σ, e) ⇓c′ t′ OOT. Then if c′ ≤F c we have that t′ ≤T t.

Given two evaluations of the same configuration with the same fuel, we know that
the results and traces must also be the same.

33

Lemma 3.9 (Evaluation with the same fuel (determinism))
Let (σ, e) ⇓c t r and (σ, e) ⇓c t′ r′ be two evaluation derivations. Then r = r′ and t = t′.

The context interpretation relation has similar properties.
We can also formally state the divergence preservation theorem that was described

earlier.
Lemma 3.10 (Divergence preservation)
Let f be a function F → F such that f(x) ≤F f(y)⇒ x ≤F y. Assume that for two
configurations (σ1, e1) and (σ2, e2) we know that if (σ1, e1) ⇓c1 t1 OOT then there exist
c2 and t2 such that (σ2, e2) ⇓c2 t2 OOT and c1 ≤ f(c2). Then if (σ1, e1) ⇑ we have that
(σ2, e2) ⇑.

Proof Let c be a fuel value. We must show that there exists t such that (σ2, e2) ⇓c t

OOT. From the hypothesis that e1 is a diverging program, we know that (σ1, e1) ⇓f(c) t1

OOT for some t1. Therefore, we can derive that (σ2, e2) ⇓c2 t2 OOT for some c2 and t2
such that f(c) ≤ f(c2). But from the hypothesis about f we have that c ≤ c2. From
lemma 3.7 we obtain t ≤ t2 such that (σ2, e2) ⇓c t OOT. �

We can also state how the evaluation relation composes with the interpretation of
a binding context. If a context E is interpreted in environment σ as a new environment
σ′ and an expression e evaluates to a result in the environment σ′, then the expression
E [e] evaluates to the same result in the initial environment E .

Lemma 3.11 (Composition)
Let (σ, E) Bc1 t1 Res(σ′) and (σ′, e) ⇓c2 t2 r. Then (σ, E [e]) ⇓c1〈+〉c2 t1〈+〉t2 Res(v).

In the interpretation of a context E times out with some fuel value c, then for any
expression e so does E [e] for the same fuel value.

Lemma 3.12 (Composition (OOT))
Let (σ, E) Bc t OOT. Then (σ, E [e]) ⇓c t OOT.

Given an evaluation of E [e] for some binding context E , we can decompose it to the
interpretation of E and the evaluation of e. We distinguish two cases: the evaluation
of expression E [e] returns a result and the evaluation of E [e] times out. In the former
case the interpretation of E terminates with a new environment and the evaluation
of e terminates in the new environment.
Lemma 3.13 (Decomposition)
Let (σ, E [e]) ⇓c t Res(v) for some binding context E. Then there exist fuel values c1
and c2 and trace values t1 and t2 such that (σ, E) Bc1 t1 Res(σ′), (σ′, e) ⇓c2 t2 Res(v),
c = c1 〈+〉F c2, and c = t1 〈+〉T t2.

The latter case is more complicated. If the evaluation of E [e] times out for some
fuel c, then either the interpretation of E times out for the same fuel, or the interpre-
tation of E terminates for some smaller fuel value and the evaluation of e times out
for the remaining fuel.

Lemma 3.14 (Decomposition (OOT))
Let (σ, E [e]) ⇓c t OOT for some binding context ctx. Then either (σ, E) Bc t OOT
or there exist c1 and c2 and trace values t1 and t2 such that (σ, E) Bc1 t1 Res(σ′),
(σ′, e) ⇓c2 t2 OOT, c = c1 〈+〉F c2, and c = t1 〈+〉T t2.

34

3.4 Conclusion

In this chapter I presented the syntax and semantics of λANF, the intermediate rep-
resentation on which CertiCoq optimizations are performed. The big-step semantics
of λANF is designed to enable tracking runtime information about the resource con-
sumption of programs through abstract fuel and trace monoids. The semantics is
fuel-based, facilitating reasoning about nonterminating behaviors.

The λANF language can serve a general compilation target for functional languages.
With small extensions (primitive operations and datatypes) it could handle source
languages with more features (e.g ., references) and be used to compile reasonable
fragments of languages like OCaml.

35

Chapter 4

The λANF Optimizing Pipeline

4.1 Overview

The λANF optimizing pipeline captures the essence of compiling a pure functional
language. Its input is a pure functional program with higher-order functions, nested
lexical scoping, and curried functions (meaning that they expect exactly one user
argument — and a continuation argument if CPS transformation is used). The output
of the λANF pipeline, while still in (a subset of) the λANF language, can be easily compiled
to a low-level, first-order intermediate representation. In this subset of λANF used at the
back end of the pipeline, functions can be implemented simply with function pointers,
available in assembly or C. The λANF pipeline compiles away lexically nested functions,
by explicitly introducing closures, introduces multi-argument functions, and simplifies
the code with a series of optimization passes. However, merely compiling away higher-
order functions by introducing closures will not generate efficient code. Crucially, the
optimizing λANF pipeline generates efficient function calls by implementing specialized
closure-allocation and parameter-passing strategies for known functions.

The λANF follows a compilation-by-transformation [75, 69] approach: it uses many
small and modular same-language transformations to optimize the code and compile
away features that are not supported by the target language. Optimizations of λANF
take heavy advantage of the “cascade effect”: performing a code simplification often
exposes new opportunities for optimization. The λANF transformations can be divided
into two categories:

• Simplification passes that make static reductions in the code. These consist of
inlining that performs static beta reductions, and shrinking [15, 23] that per-
forms shrink reductions: projection folding, case folding, dead code elimination,
and inlining (of functions that are called exactly once). Such transformations
are crucial to simplify administrative redexes introduced by the transformations
in the next category.

• Transformations that change the calling strategies of functions: uncurrying ,
lambda lifting , closure conversion , and dead parameter elimination .
Uncurrying introduces multi-argument functions, closure conversion compiles

36

nested lexical scoping into flat scoping, lambda lifting turns free variables into
parameters in order to eliminate closures when this is possible, and dead param-
eter elimination removes parameters that are not needed (that can be initially
present in the code or introduced by other transformations, e.g ., closure con-
version). The simplification transformations are called multiple times, between
other λANF transformations, and perform administrative reductions that help
keep these transformations simple. For example, by doing separate inlining
passes we can express both uncurrying and lambda lifting as local transfor-
mations. Shrinking statically reduced administrative redexes introduced by
closure conversion, and dead parameter elimination removes useless environ-
ment parameters. These allow us to keep closure-conversion transformation
very simple: our closure-conversion transformation will blindly closure convert
each function. Useless closures will be eliminated by other transformations.

Before proceeding with explaining further the individual λANF transformations and
their interactions, I give some background on some common compilation techniques
for efficient closure implementation.

4.2 Closure Strategies

Efficient implementation of closures is essential for good performance of functional
code. Heap-allocated closures are expensive for function creation (an environment
and a closure pair must be allocated in the heap), function call (the heap must be
accessed to project the code and environment from the closure pair) and function
execution (the heap must be accessed to fetch the values of free variables of a func-
tion). Furthermore, closures increase heap allocation and stress the garbage collector.
Although heap allocated closures are required to fully support higher-order functions,
not every function needs to be represented with a heap-allocated closure at run time.
The RABBIT compiler for Scheme [125] was the first compiler for a functional higher-
order language to investigate efficient closure-allocation strategies. It demonstrated
that function calls in languages with first-class functions need not be expensive and
it inspired the subsequent generation of compilers for functional languages including
the ORBIT compiler for Scheme [2] and the SML/NJ compiler [10]. Here, I review
some common closure allocation strategies that enable efficient code generation.

First-class functions can escape their original scope of definition by being passed
as arguments, returned as results of functions or stored in data structures. The
presence of nested functions with lexical scoping however, functions can capture ref-
erences to their environment that may not be available when they are called. The
general solution to that is to represent a function as heap-allocated closure: a code
pointer together with an environment that holds the values of the free variables of
the function. However, not all functions need the full generality of closures, and the
overhead of heap-allocated closures can often be avoided. We say that a function
escapes downwards if it escapes only through parameter passing, and that it escapes
upwards if it is being returned as a result. A function is known if all of is call sites
are known. We can now distinguish the following cases for closure allocation.

37

• Known functions with no free variables. A known function with no free
variables does not, generally, need a closure. It does not have free variables and
since it does not escape it cannot flow to the same application position where a
function with free variables does. Therefore its closure can be safely eliminated.

• Known functions with free variables. When a function is known but has
free variables, these variables can be stored in registers by being passed as
parameters to the function. Since all call sites of the function are known, they
can be modified accordingly to pass free variables as extra parameters. This
eliminates closure allocation and the memory accesses associated with fetching
free variables. The transformation that turns free variables to extra parameters
is known as lambda lifting [67]. When the number of arguments of the function
after lambda lifting exceeds the number of the available registers in the machine
then a closure may be used to avoid register spilling.

Storing closure environments in registers is a common technique for CPS [125, 2,
10] and direct-style compilers [69, 87]. Lambda lifting is used by both GHC [69]
and OCaml’s Flambda optimization pipeline [87, Chapter 21] to reduce closure
allocation. In both cases, lambda lifting is reported to improve the perfor-
mance of some programs and worsen the performance of some other programs.
In Chapter 8, I evaluate several design aspects of lambda lifting, some of which
were never investigated before, identifying potential sources of overhead. Our
resulting lambda lifting transformation never worsens the performance of pro-
grams in our benchmark suite compiled with ANF. Furthermore, we observe
substantial speedup in certain programs.

• Downward escaping functions. The closure of functions that only escape
downwards can be stack allocated. This is possible because downward escaping
functions have a limited extent: a downward escaping function cannot be called
after its original scope of definition is no longer active. This is better understood
if we consider a function that only escapes through parameter passing. Such
function cannot be called after the function to which it is passed as argument
has returned.

In languages like ALGOL and Pascal functions can only escape downwards.
This allows the compilers to enforce a stack discipline for closure allocation and
avoid the need for garbage collection. In the general case, where upward and
downward escaping functions coexist, deciding where to allocate each closure
(stack or heap) requires intraprocedural escape analysis [52] to approximate the
set of downward escaping functions.

Note, that in presence of first-class continuations (callcc) downward functions
can have an unlimited extent, which complicates stack allocation of downward
escaping functions.

CertiCoq does not implement the stack allocation strategy.

• Upward escaping functions. Upward escaping functions require the full
generality of heap-allocated closures. Such functions can have unlimited extent

38

and therefore can be called after their original scope of definition has been
deactivated. For closures of upward escaping functions a deallocation point
cannot be statically determined and therefore they must be heap allocated and
garbage collected.

• Known functions called from nested functions. Generally, a known func-
tion that is called from a function that escapes inherits the closure strategy of
the function that calls it. That is, a function that is called from an escaping
function is considered itself escaping, and its closure must be contained in the
closure environment of the calling function. An exception to this rule is when
the closure environment of the callee is a subset of the environment of the clo-
sure of the caller (which is trivially true if the callee is a closed function). In
this case, all free variables of the function are available at the time of the call
and they can be passed as arguments.

• Functions with both known and escaping occurrences. A function may
both be applied at a known call site and escape. In such case, we want the
known function application to avoid using a closure, even though a closure
must be allocated when the function escapes. This is achieved by creating
two instances of each function [10]: one that is used at known call sites and
a second one, that is a wrapper around the known function, and is used at
escaping positions. In this way, an optimized entry point is created for known
calls to the function, while unknown calls must go through its closure-converted
wrapper.

The CertiCoq compiler implements the above closure strategies, with the excep-
tion of the stack allocated closures.

Closure environment representations. Closures can also be optimized for their
environment representation. Even though the closure-pair layout must be uniform
for all functions that can flow into the same application positions, this is not true for
the layout of the closure environment whose representation is private to each closure
and its layout can be different for each function. The RABBIT, ORBIT compilers
for Scheme and early implementations of the SML/NJ compiler used linked closure
environments, where nested functions share parts of the closure environment with
their enclosing function to improve space performance and optimize closure creation
time. However, this representation was later shown to be unsafe for space [10], mean-
ing that it can introduce space leaks, worsening the asymptotic space complexity of a
program. A common alternative, which is also used in CertiCoq, is to use flat environ-
ments that contain exactly the free variables of each function and are safe for space.
In Chapter 7, where I prove the space safety of CertiCoq’s closure conversion, I give
concrete examples of different environment representations and a counterexample for
space safety for the linked environment representation.

Closure-environment sharing optimizations that are also safe for space are possible
and have been employed by the SML/NJ compiler [120, 121].

39

4.3 Transformations

In this section, I describe each λANF optimization and the subtleties that it involves. I
also describe the combined effect that is achieved by the coordination of the λANF trans-
formations. The λANF pipeline is shown in Figure 4.1. Between transformations, we
iteratively perform an inline pass followed by a shrinking pass, until no more redexes
in the program can be reduced. It is important to sequence these two transformations
in this way in order to enable cascading optimizations.1

Shrink
Reduction

Uncurrying Inline/shrink
Lambda
Lifting

Inline/shrink

Closure
Conversion

Hoisting Inline/shrink
Dead Param.

Elim.

CPS

ANF

C code
generation

Figure 4.1: The λANF optimizing pipeline.

Presentation conventions. I do not explicitly provide the code or the relational
specification of each transformation, I instead give a pointer to the online code repos-
itory where the code can be found. I describe the effect that the transformation has
as a set of local rewrite steps. This often is informal as not every transformation
can be described as a set of local rewrite steps (e.g ., closure conversion). In addi-
tion, the actual transformations will require alpha renamings to ensure the resulting
term is well scoped. Recall from Section 3.2.1 that a term is well scoped (denoted
well scoped(e)) if it has unique bindings and its free variables are distinct from its
bound variables. For the purposes of the presentation, I will allow reusing the same
binder names, ignoring alpha renaming.

4.3.1 Shrinking2

The pipeline starts with a shrinking transformation pass that performs static reduc-
tions and simplifications that are guaranteed to never increase the size of the code
(hence its name). Shrinking performs simple dead code elimination (i.e., without
liveness analysis), case folding, projection folding, and inlining of functions that are
called exactly once. These steps are called shrink reductions. Shrinking is guaran-
teed to eliminate all administrative redexes after CPS conversion [22], significantly
reducing the code size. CertiCoq’s shrinking transformation for CPS is explained in
detail in Savary Bélanger’s thesis [21]. Here, I review the functionality of shrinking
and I describe its extension to λANF.

1Despite its iterative nature, this pass has minimal effect on the performance of the compiler.
2CertiCoq’s shrinking transformation was implemented and verified for CPS by Savary

Bélanger [15, 22]. The implementation and proof were later extended by me to apply to the full λANF
language.

40

Dead code elimination. Shrinking will remove let-bindings that are not explicitly
used in the rest of the program. In particular the transformation will perform the
following reductions.

let x = C(y) in e
or

let x = y.i in e e if x 6∈ fv(e)
or

fun x y = e′ in e

Note that, in general, the following reduction cannot be performed in a non-
terminating language.3

let x = f y in e e if x 6∈ fv(e)

The problem is that application of f might never terminate, in which case the input
program will diverge and the target might not necessarily do so. One however, can
activate this reduction step if the input is restricted to terminating languages like
Coq.

Projection folding. Shrinking will statically evaluate projections whenever the
value of the destructed variable is statically known. The following reduction will
evaluate let z = x.i in e to e{yi/x} if the value of z is statically known to be a
constructor whose i-th argument is yi.

let x = C(y1, . . . , yn) in E [let z = x.i in e]

let x = C(y1, . . . , yn) in E [e{yi/x}] if x 6∈ bv(E) and yi 6∈ bv(E) ∪ bv(e)

Capturing of yi must be avoided by requiring that yi 6∈ bv(E)∪bv(e). This is always
satisfied by well-scoped programs. Note that in a conventional lambda-calculus, where
the yi can be expressions representing computations, projection-folding (and other
shrink optimizations) can increase work by duplicating computations; but in CPS or
ANF, the yi are just variables, and no computation is duplicated.

Case folding. Similarly, case constructs will be statically evaluated whenever the
scrutinee is statically known to be a constructed value whose constructor appears in
the discriminating patterns. In such a case, case x of [Ci → ei]i∈I becomes ej when
x is known to be a constructed value with constructor tag Cj with j ∈ I.

let x = Cj(y) in E [case x of [Ci → ei]i∈I]

let x = Cj(y) in E [ej] if x 6∈ bv(E)
3A typed Gallina program always terminates. λANF proofs do not assume that the source is a

terminating program; the λANF pipeline could be used to compile non-terminating languages as well.

41

Function Inlining. Known calls to nonrecursive functions that are called exactly
once will become statically evaluated by inlining the function body at the place of
the call. Choosing to inline only functions that are used once allows us to delete the
function definition once the inlining has happened. Therefore, renaming the binders
in the inlined expression is not necessary to preserve well-scopedness. Essentially,
extending shrinking to the full λANF involves inlining let-bound function calls. I don’t
give the rewrite rules for shrink-inline, as they are similar to the rewrite rules for
inlining that I describe next.

The shrinking algorithm can perform many cascading optimizations in the same
linear-time pass (or O(n log n) time in a language without mutable arrays, where
lookup tables must be implemented as purely functional search trees). Often a shrink
reduction might enable another shrink reduction of a different kind. For example, a
projection folding might reveal some dead code. Removing the dead code can enable
inlining of a function that was previously applied more than once.4 Shrinking will
be applied repeatedly until the program is in shrink-normal form. Shrinking will also
perform the necessary substitutions of variables as it traverses the term so that a
second traversal is not needed.

The shrinking phase is crucial not only to simplify redexes that the user wrote in
source code, but to reduce administrative redexes from the CPS (or ANF) transfor-
mation, and to simplify the result of other optimizations such as closure conversion
and lambda lifting. To achieve that, shrinking is called multiple times in the λANF
pipeline.

4.3.2 Inlining5

The inlining transformation will inline known calls to non-recursive functions. It
is different from shrink-inlining in that it can inline functions that might be called
multiple times in the input program. The choice of which functions to inline (inline
heuristic) is a parameter to the transformation and its correctness is orthogonal to this
choice. Currently, inlining will inline functions that are marked for inlining by other
transformations (uncurrying and lambda lifting) and functions that are sufficiently
small (to avoid code blowup). The inlining transformation will alpha-rename the
binders of the inlined code with fresh names to ensure that the resulting term is well
scoped.

There are two cases of functions calls to inline: tail-calls and let-bound calls. The
former is rather straightforward while the latter runs into issues related to the fact
that the ANF representation is not closed under beta reduction. I review both cases.

Tail-call inlining. Inlining a tail-call amounts to replacing the call with the body of
the function where the formal parameters are substituted with the actual parameters.

4This pattern commonly arises after the closure conversion transformation.
5CertiCoq’s inlining transformation was implemented and proved correct by me. The implemen-

tation was based on an earlier implementation by Savary Bélanger.

42

This is captured by the following rewrite rule (not showing the alpha-conversion that
is needed after inlining).

fun f x = e in E [f y]

fun f x = e in E [e{y/x}] if y 6∈ bv(e) and fv(e) ∩ bv(E) = ∅

Notice that if a function definition becomes dead after some inlinings it will be
removed by subsequent passes of shrinking. The side conditions in the rewrite rule
to avoid variable capture are always satisfied when the input term is well scoped.

Let-bound call inlining. Inlining of let-bound calls is more complicated. Ideally
one would like to replace a known call fun f x = e1 in E [let x = f y in e2] with
fun f x = e1 in E [let x = e1{y/x} in e2], however this term is not in ANF. The
solution is to renormalize in-place the term let x = e1{y/x}, so that it is in ANF.
The situation is more complicated when e1 involves case analysis at the outermost
level of the function body. The current implementation for inlining does not handle
inlining of let-bound function calls of functions that perform case analysis. This is
not a fundamental limitation: I outline how our current approach can be extended to
this case, as well as the reasons why this is not currently handled.

To renormalize a let-bound function application after inlining I use the helper
function inline letapp(·, ·). The function receives two arguments: the body to be
inlined and an identifier, which is the original name of the let binding. It returns
(optionally) a binding context and an identifier. Intuitively, after evaluating the
binding context, the value of the function application will be bound to the returned
identifier. The function is shown in Figure 4.2.

The cases for constructors, projections, function definitions, and let-applications
are straightforward. If the recursive call succeeds then the let-binding is appended at
the beginning of the context returned by the recursive call, and the returned identifier
remains the same. If the recursive call fails, so does the current call. The case of
case analysis is also straightforward: it always fails. More subtle are the cases of
tail-call and return. If the expression to be inlined ends with a tail call then it will
be converted to a let-bound call using as binder the identifier provided as input.
Therefore, the result of the inlined function call will be bound at this identifier when
the return context is evaluated. When the input expression is a return, then the result
of the inlining function is the empty evaluation context and the returned variable,
since this is the result of the function call. Conceptually, the variable that is returned
by inline letapp(·, ·) is the input variable if the expression to be inlined ends with a
tail call or the variable that is being returned, if the expression ends with a return.

I can now express the rewrite rule using the inline letapp(·, ·) function.

fun f x = e1 in E1[let z = f y in e2] if inline letapp(e1{y/x}, z) = Some(E2, z′)
 and y 6∈ bv(e1) and fv(e1) ∩ bv(E1) = ∅

fun f x = e1 in E1[E2[e2{z′/z}]] and z′ 6∈ bv(e2) and fv(e2) \ {z} ∩ bv(e2) = ∅

43

inline letapp(let x = C(y) in e, z)
def
=

Some(let x = C(y) in E , z′)
if inline letapp(e, z) = Some(E , z′)
None otherwise.

inline letapp(let x = y.i in e, z)
def
=

Some(let x = y.i in E , z′)
if inline letapp(e, z) = Some(E , z′)
None otherwise.

inline letapp(case y of [Ci → ei]i∈I , z)
def
= None

inline letapp(fun f x = e1 in e2, z)
def
=

Some(fun f x = e1 in E , z′)
if inline letapp(e2, z) = Some(E , z′)
None otherwise.

inline letapp(let x = f y in e, z)
def
=

Some(let x = f y in E , z′)
if inline letapp(e, z) = Some(E , z′)
None otherwise.

inline letapp(f x, z)
def
= Some(let z = f x in E , z)

inline letapp(ret(x), z)
def
= ([·], x)

Figure 4.2: Inlining of let-bound calls.

The let-bound call will be replaced by the context returned from inline letapp(·, ·)
after the formal parameters are substituted with the actual parameters. In the rest
of the expression, the variable z that previously bound the result of the call will be
substituted by z′. As before, the side conditions are necessary to avoid erroneously
capturing variables, and will always hold when the expression is well scoped.

It is worth noting that the substitutions shown in the rules above do not happen
as a separate substitution pass, but in the same traversal as the inlinings.

Although inlining of expressions that include case analysis is not currently handled
I outline how that could be possible. Handling inlining of case constructs involves
introducing a join point : a local continuation that captures the continuation of the
inlined call [92]. Inlining the call to f in fun f x = e1 in E1[let z = f y in e2] would
convert the program to fun f x = e1 in E1[fun k z = e2 in cont app(e1{y/x}, k)] The
function cont app(·, ·) (Figure 4.3) traverses the term (first argument) and applies the
continuation (second argument) to the result of the computation. Note that if the
input term has no case analysis, then the continuation will be used only once and
therefore will be inlined by the shrinking transformation. The result of that would
be exactly the inlining strategy achieved by inline letapp(·, ·).

It is arguable what the efficiency gain of introducing a join point is. Indeed, we
are able to inline strictly more functions with this strategy, but we also introduce a
new call to the continuation k. First, observe that both calls to f and k are known,
so it is is likely that their free variables can be passed as parameters and no closures
are used. If none of the functions requires a closure, the two calls have approximately

44

the same efficiency (passing parameters in registers is a cheap operation so we can
assume that the performance difference that arises from different number of arguments
is negligible). It is also possible that one or both functions need a closure. If both
functions need a closure, then inlining with join point will be faster if k has fewer free
variables than f . If only k needs a closure, then it is clearly better to avoid inlining.
If only f needs a closure, then inlining will be the most sensible choice. Clearly, an
educated choice of whether f should be inlined using a join point requires knowing
whether f or k require a closure. We did not implement this heuristic decision to
keep the implementation simple.

cont app(let x = C(y) in e, k)
def
= let x = C(y) in cont app(e, k)

cont app(let x = y.i in e, k)
def
= let x = y.i in cont app(e, k)

cont app(case y of [Ci → ei]i∈I , k)
def
= case y of {Ci → cont app(ei, k)}i∈I

cont app(fun f x = e1 in e2, z)
def
= fun f x = e1 in cont app(e2, z)

cont app(let x = f y in e, k)
def
= let x = f y in cont app(e, k)

cont app(f x, k)
def
= let z = f y in k z where z is fresh

cont app(ret(x), k)
def
= k x

Figure 4.3: Inlining using a join point.

4.3.3 Uncurrying6

Uncurrying is responsible for transforming calls to known curried functions to calls
to multi-argument functions. By default, all functions in the input of λANF are either
unary (in direct style programs) or have two arguments (in continuation-passing style
programs). This produces inefficient function calls since applying a multi-argument
function involves a series of successive function applications. Even worse, each of the
intermediate function-returns allocates a closure.

The uncurrying transformation recognizes curried function definitions and un-
curries them, one argument at a time. Uncurrying works by creating an uncurried
function definition where all arguments are supplied at once. Then, it declares copies
of the function that take one argument at a time as wrappers around the uncurried
version. The call sites are not changed by the uncurrying transformation: all uses
of the function refer to the wrapper (that has the original name of the function).
Function inlining, that happens after uncurrying in the pipeline, will inline wrappers
at known call sites, forcing the uncurried function to be used.

As a rewrite rule this looks like,

6CertiCoq’s uncurrying transformation was first implemented by Greg Morrisett and was later
adapted by me and John Li. John Li proved the transformation correct.

45

fun f x = fun f ′ x++ y = e1
fun g y = e1 in ret(g) fun f x = if g 6∈ fv(e1)

in e2 fun g y = f ′ x++ y in ret(g)
in e2

The side condition is needed to ensure that the inner function g is not recursive,
in which case the rewrite would not be sound since when the uncurried function is
introduced g is no longer in scope. This uncurry pattern covers direct style programs.
The pattern for CPS programs is slightly different and is shown below.

fun f k :: x = fun f ′ x++ y = e1
fun g y = e1 in k g fun f k :: x = if g 6∈ fv(e1)

in e2 fun g y = f ′ x++ y in k g and k 6∈ fv(e1)
in e2

The difference is that in CPS f does not return g but it applies it to its continuation
k. The continuation of f , which will not occur in the body e1, is not needed as an
argument in f ′.

The uncurrying transformation of CertiCoq will uncurry all functions in one pass,
by making a recursive call to fun f ′ x++ y = e1. This one-pass implementation is due
to John Li.

Uncurrying of escaping functions. CertiCoq does not currently handle uncur-
rying of escaping functions. It is not generally possible to change how parameters are
passed if the function is not known as different functions might flow into the same
position. Some more restricted form of uncurrying can be achieved with flow analysis.
If the set of functions that flow into the same escaping position can all be uncurrried
in the same way, then the call sites of the unknown function can be safely modified (if
they are all known) and the uncurried functions can be used at the escaping positions
instead. As an example consider the higher-order function fold whose first argument
is a function that takes two arguments. Since this is an unknown function it will not
be uncurried and in the body of fold it will be first applied to its first argument,
returning a function that will be then applied to the second argument. If the compiler
can statically prove that all of the functions that flow to the first argument of fold
are curried functions, then the uncurried instances can be used as the first parameter
to fold and fold can change the application of its first argument to multi-argument
application.

Excessive use of unknown curried functions applications can also be mitigated by
argument specialization. Argument specialization can remove higher-order arguments
that are always instantiated with the same actual parameter by replacing them with
the actual parameter.

Uncurrying of higher-order functions is possible as a typed-directed program trans-
formation, where the type information can be used to determine the arity of the
function [59, 43].

CakeML achieves uncurrying [106] of higher-order functions by allowing partial
application in the semantics of the language.

46

4.3.4 Closure Conversion7

Closure conversion compiles nested functions with free variables into closed functions
that can be moved to the top-level of the program. In Section 4.2, I explained
different closure strategies that are used by CertiCoq. Despite that, closure conversion
will handle all functions uniformly. Closure environments will be installed for all
functions and all functions will form closure pairs together with their environment.
All function calls will be handled as calls to closure-converted functions. Lambda
lifting (Section 4.3.5) in combination with shrinking and dead parameter elimination
will take care of implementing the specialized closure strategies. The reason for this
design is to keep the implementation, specification, and correctness proof of closure
conversion as simple and modular as possible.

CertiCoq’s closure conversion is a λANF transformation. It is common for com-
pilers to implement closure conversion as a cross-language transformation or as part
of the code generator. In CertiCoq, having the closure conversion be part of the
transformational λANF pipeline allows us to keep the closure-conversion transforma-
tion simple and modular (compared with other compilers, in which lambda lifting
and hoisting are often performed as a monolithic pass). We can also run the (same,
proved correct) inliner after closure conversion, where more opportunities for inlining
may appear: functions are no longer nested and they are all defined at the top-level,
making it easier to inline functions that had contained nested functions before closure
conversion.

I show (rather informally) how closure conversion works using rewrite steps. Upon
function definition, closure conversion will install an environment parameter to ev-
ery function, and free variables of the function will be replaced with accesses to the
environment. After the definition of the function the closure environment will be
constructed (using a unique constructor tag8 for each closure, represented as Cf ()
below) that has the free variables of the function. A closure pair will be then formed
whose first component is the function pointer and its second component is the clo-
sure environment. The constructor tag for the closure pair is the same for every
closure (represented as CCC() below). To lower register pressure (i.e., the number of
simultaneously live local variables), the closure pair will not be formed right after the
definition of the function but before its first use. A subtle point is that references to
known closed functions shall never be considered free variables of another function,
even if they appear to be so syntactically. In the final program, such functions will
be top-level global definitions and should not end up in closure environments. Every
function definition will undergo the following transformation.

7The implementation and semantic preservation proof of CertiCoq’s closure conversion was done
by me. John Li proved that the closure conversion program is sound with respect to the specification
of closure conversion as an inductive relation.

8A closure is a heap-allocated pair of function-pointer and environment pointer, but in CertiCoq’s
representations of tuples any ”pair” type is really an inductive data type with one 2-argument
constructor; it is the tag of this constructor that is mentioned here.

47

fun f γ :: x = e′1 in

fun f x = e1 in e2 let Γ = Cf (fv) in
let fclo = CCC(f,Γ) in e′2

In the above, fv is a list with the free variables of f without the references to
known closed functions, e′1 is the closure-converted program e1 with references to free
variables replaced with accesses to the environment, and e′2 is the rest of the closure-
converted program where references to f are replaced with references to the closure
fclo and call sites are modified as described by the following transformation.

let fcode = fclo.1 in

fclo x let fenv = fclo.2 in

fcode fenv :: x

After closure conversion a separate hoisting pass will move all of the function def-
initions to the top-level of the program. After this pass there are no nested functions
in the program and there are only two scope levels: the global scope and a local scope
for each function definition.

4.3.5 Lambda Lifting9

Lambda lifting [67] is a well-known program transformation that passes free variables
of functions as extra arguments. In CertiCoq, lambda lifting happens before clo-
sure conversion and its functionality is crucial for the implementation of the closure
strategies at the target program. When a function is lambda lifted, two copies are
created: one that is used in known application positions and one that is used in escap-
ing positions. Furthermore, lambda lifting will turn free variables of the known copy
of the function to parameters. The escaping copy, which has exactly the same free
variables as the original function, is defined as a wrapper around the known function
that passes the free variables as parameters. Known calls to the original function are
inlined to call the known function copy and pass its free variables as parameters.

This is summarized in the following simple rewrite step (recall that inlining will
be performed in a separate pass).

fun f ′ fv ++ x =

fun f x = e1 in e2 fun f x = f ′ fv ++ x in e1
fun f x = f ′ fv ++ x in e2

where fv ⊆ fv(fun f x = e1)

The function f ′ is the known copy of the function and fv is a subset of the free
variables of the function that is chosen to be passed as parameters. After the function
definition, a copy of the function f is declared that calls f ′ and passes the free variables
as parameters. Note that now fv are free variables of f but not of f ′. A copy is also

9The implementation and verification of CertiCoq’s lambda lifting was done by me.

48

declared upon entering the body f ′ as the function might be recursive. Known calls
to f can now be inlined to call f ′ instead.

In the rule above, fv is only required to be a subset of the free variables of a
function. In practice, our lambda lifter will lambda-lift a function only if all of its
free variables are eligible to become parameters (as in closure conversion a reference
to a known closed function is not considered a free variable — this includes functions
that might become closed during lambda lifting.). After lambda lifting, both copies
of the function will be closure-converted. But since f ′ is closed its closure and closure
environment will be eliminated by subsequent calls to shrinking and dead parameter
elimination. The wrapper f will be closure converted and will be used only if the
function escapes, otherwise it will be deleted by shrinking.

An important aspect of the transformation involves calls to recursive functions
from unknown call sites. In this case, the entry to the function will happen through
the closure-converted wrapper f . After entry, free variables will be projected from
the environment and will be passed as parameters to the function f ′, and will not be
projected out of the environment for the rest of the recursion. If the original closure-
converted function was called instead, then free variables would be projected out of
the environment at each iteration.

The above transformation is functionally correct whatever the choice of free vari-
ables and known function calls to be inlined is. However, several design decisions
can be made about what function to lambda lift and which known calls to inline,
which can affect the performance of the lambda lifting transformation. For best per-
formance, not every free variable should be passed as parameter and not every known
call should be inlined to call f ′. These choices are crucial for the performance of the
generated code but the heuristic or algorithm that makes these choices does not need
to be proved correct. The design choices we investigate are summarized bellow.

Passing free variables as parameters. Generally, it might not be desirable to
turn a free variable into a parameter. We observe that free variables that remain
live across intermediate function calls in the body of the function in which they are
free are more expensive to turn into parameters. This because the values of registers
(where parameters are typically stored) that remain live across calls must be saved
by the caller by pushing them into the stack before the call and popping them after
the call returns.10 I experimentally evaluate this performance trade-off in Chapter 8.

In addition, we require that the total number of parameters of a function after
lambda lifting does not exceed the available registers in the machine.

Inlining of calls to lambda-lifting wrappers. If a function is called in the same
scope of definition in which it was defined, then the call can be safely replaced with
the call to f ′ since all of its free variables are in scope. The situation is more tricky
when a known call to f happens from within a function g that is defined after f . If
it happens that the free variables that are parameters of f ′ are a subset of the free
variables of g then again f ′ can be safely called. If this is not true, then inlining

10This analysis assumes that no callee-save registers are used.

49

f inside g will increase the free variables of g. If these extra free variables cannot
become parameters of g then the closure environment of g will grow (or, even worse, a
previously closed function will now become a closure). In the current implementation
we explore two possibilities: we can conservatively decide not to inline calls that
increase the free variables of a function to avoid increase in closure allocation, or we
can aggressively decide to inline all known calls. I experimentally evaluate these two
approaches in Chapter 8.

Inlining known calls inside wrappers. The wrapper functions, which are used
in escaping positions, will immediately call the known function. One could consider
inlining the body of known functions inside the wrappers when the body of the original
function is small enough (OCaml’s Flambda takes a similar approach). These calls
are tails calls to known functions, and can be implemented very efficiently as jumps.
We chose not to inline these calls. Our experimental results suggest no improvement
in performance when this inlining is performed.

4.3.6 Dead Parameter Elimination11

Dead parameter elimination is needed to eliminate empty closure environments of
known closed functions that are by default installed by closure conversion. Recall
that closure conversion installs environments to nonescaping closed functions too as
it makes no distinction between known and escaping functions. Such environments
will never be accessed by the code of the function; they will however be passed as
arguments to recursive calls of the function. Arguments that are passed as parameters
to (mutually) recursive functions – but never otherwise used – are dead and can be
deleted. Such arguments are free (syntactically occur) in function bodies, but only
to be passed as useless parameters. Our transformation performs liveness analysis
to find which parameters are used by each function. After the set of live parameters
has been computed for each function, dead parameters of known functions can be
dropped and the corresponding call sites should be modified to only pass the live
parameters.

For each function, the set of live parameters is the smallest set that satisfies the
following.

1. If a parameter is used as a constructor argument or in a projection or as a
scrutinee in case analysis or in function application position, then it is live.

2. If a parameter is used as an argument in a known function call, it is live if the
corresponding formal parameter is live.

3. If a parameter is used as an argument in a unknown function call, it is live.

This set can be computed with the following algorithm. A state is kept that labels
each parameter of every function as live or dead.

11The implementation of CertiCoq’s dead parameter elimination of CertiCoq was done by Katja
Vassilev and me. The verification of dead parameter elimination was done my me.

50

• Initialize the state by marking parameters of known functions as dead and
parameter of escaping function as live.

• At each iteration, traverse the program and mark parameters that are live
according to rules 1-3 above. Use the current state to determine if a parameter
that is passed as an argument to another function is live.

• Stop when a fixed point is reached.

The program is traversed once for each iteration. At most, there will be as many
iterations as the total number of function parameters since at least one parameter
should be marked as live at each iteration. Therefore, the worst-case complexity of
liveness analysis is O(n2), where n is the size of the program. Since the CertiCoq
algorithm is implemented using only purely functional data structures, its worst-case
complexity will be O(n2 log n). This algorithm can be easily extended to full dead
code elimination, that removes other dead bindings as well as dead parameters.

4.4 Compilation by Example

In this section, I provide a bigger example that elucidates how the λANF pipeline
achieves the closure strategies described in Section 4.2. In the example presented
here I will deviate slightly from the syntax of λANF by allowing nested constructor
applications in order to keep the code shorter and more readable. I will also use the
standard list notation (:: for cons and [] for nil).

Consider the following program where variables y and z are bound in the local
scope but are free in function interleave.

fun interleave l =
case l of

| [] => []
| x : : l => x : : y : : z : : (interleave l)

end

in

let l1 = [1 , 2 , 3] in

let l = [l1 , l1 , l1] in

let l1 ’ = interleave l1 in

let l ’ = map interleave l in

The recursive function interleave receives a list as input and inserts y and z

after each element of the list. This function is later called on list l1 and also on each
element of the list l (which is a list of lists) with the use of the higher-order function
map. For simplicity, assume that map is defined earlier in the program and it is not
being compiled separately.

Let us also assume that the program is already uncurried and that the next trans-
formation to take place is lambda lifting. Both of the free variables of interleave

51

can be lambda lifted. A new function, interleave_known, is declared that takes
as extra arguments the variables y and z. Then interleave is defined in terms of
the new function, both inside the function body and immediately after the function
definition.12

fun interleave_known l x y =
fun interleave l = interleave_known l x y in

case l of

| [] => []
| x : : l => x : : y : : z : : (interleave l)

end

in

fun interleave l = interleave_known l x y in

let l1 = [1 , 2 , 3] in

let l = [l1 , l1 , l1] in

let l1 ’ = interleave l1 in

let l ’ = map interleave l in

The two known calls to interleave can be inlined so that interleave_known is
called. The definition of interleave inside the body of the function will be deleted by
the shrinking transformation since it is not used anymore. The call to map, assuming
that map is defined earlier in the program and “splitted” in the same way, will also be
replaced with map_known. It is a closed function, so no extra parameters are passed.
This leaves us with the following code.

fun interleave_known l x y =
case l of

| [] => []
| x : : l => x : : y : : z : : (interleave_known l x y)

end

in

fun interleave l = interleave_known l x y in

let l1 = [1 , 2 , 3] in

let l = [l1 , l1 , l1] in

let l1 ’ = interleave_known l1 x y in

let l ’ = map_known interleave l in

Next closure conversion will run. It will closure-convert each function, regardless
of their free variables and their status as escaping or known. I use record notation
for the closure and environment records. The comments in the code indicate where
closures are created and applied.

12In the actual implementation, the local variables x and y of interleave known would have to be
renamed to avoid violating the “global unique bindings” property of our intermediate representation.

52

fun interleave_known l x y env =
case l of

| [] => []
| x : : l => x : : y : : z : : (interleave_known l x y env)

end

in

(* closure of interleave_known is created *)

let interleave_known_env = { } in

let interleave_known_clo = { interleave_known , interleave_known_env }

fun interleave l env =
let x = env.1 in

let y = env.2 in

(* application of interleave_known *)

let interleave_known = interleave_known_clo.1 in

let env’ = interleave_known_clo.2 in

interleave_known l x y env’
in

(* closure of interleave is created *)

let interleave_env = { x , y } in

let interleave_clo = { interleave , interleave_env }

let l1 = [1 , 2 , 3] in

let l = [l1 , l1 , l1] in

(* application of interleave_known *)

let interleave_known = interleave_known_clo.1 in

let env = interleave_known_clo.2 in

let l1 ’ = interleave_known l1 x y env in

(* application of map *)

let map_known = map_known_clo.1 in

let env = map_known_clo.2 in

let l ’ = map_known interleave_clo l env in

In the above code all functions are closure-converted and all applications are
converted so that they project the code and the environment from the closure pair.
However the closures of interleave_known and map_known are statically known, so
the projections of code and environment will be folded by shrinking. After that
interleave_known_clo is dead code so it will be removed.

fun interleave_known l x y env =
case l of

| [] => []
| x : : l => x : : y : : z : : (interleave_known l x y env)

53

end

in

let interleave_known_env = { } in

fun interleave l env =
let x = env.1 in

let y = env.2 in

(* application of interleave_known *)

interleave_known l x y interleave_known_env

in

(* closure of interleave is created *)

let interleave_env = { x , y } in

let interleave_clo = { interleave , interleave_env }

let l1 = [1 , 2 , 3] in

let l = [l1 , l1 , l1] in

let l1 ’ = interleave_known l1 x y interleave_known_env in

(* application of map *)

let l ’ = map_known interleave_clo l map_env in

Now only the escaping function interleave has a closure. However, the functions
interleave_known and map_known still have an empty environment parameter, which
is never accessed but only passed as an argument at every call to these functions.
Dead parameter elimination will remove these. Then interleave_known_env defined
right after interleave_known will not be used anymore and will be removed by the
shrinking pass. Here’s the final program.

fun interleave_known l x y =
case l of

| [] => []
| x : : l => x : : y : : z : : (interleave_known l x y)

end

in

fun interleave l env =
let x = env.1 in

let y = env.2 in

(* application of interleave_known *)

interleave_known l x y

in

(* closure of interleave is created *)

let interleave_env = { x , y } in

54

let interleave_clo = { interleave , interleave_env }

let l1 = [1 , 2 , 3] in

let l = [l1 , l1 , l1] in

let l1 ’ = interleave_known l1 x y in

(* application of map *)

let l ’ = map_known interleave_clo l in

In the above program, the function interleave_known has no closure, it just
receives two extra arguments with the values of its free variables. All known calls
to interleave now call interleave_known. The function interleave gets closure
converted, and its closure is passed as the first argument of map. The function will
be invoked from within the body of map, and after projecting x and y from the
environment, it will call interleave_known.

The above example illustrates how calls to known functions can be compiled more
efficiently than calls to escaping functions, by eliminating closures of nonescaping
functions. It also illustrates how this is achieved using a naive closure conversion al-
gorithm, with the use of a separate lambda lifting pass, shrinking and dead parameter
elimination.

4.5 Related Work

In this section, I compare the optimizations performed by the λANF pipeline of CertiCoq
with those of other verified compilers for functional languages. The verified compilers
I consider are the PILSNER [104], Œuf[102], CakeML [106] and Lambda Tamer [34].
I also compare CertiCoq’s optimizing pipeline with similar pipelines in GHC and the
OCaml compiler.

4.5.1 Optimizations in Other Verified Compilers

PILSNER [104] is a compositionally verified compiler for an ML-like source lan-
guage to an idealized assembly language. PILSNER translates the source language
to a CPS intermediate representation where it performs optimizations and then it
generates target code. The optimizations that are performed by PILSNER are func-
tion inlining (of top-level functions only), dead code elimination (without liveness
analysis), contification, hoisting of let-bindings out of function definitions to avoid
recomputation during loops, and common subexpression elimination.

PILSNER does not introduce multiple arguments and functions remain curried.
It also does not try to eliminate closures of known (user) functions. Calls will always
access the closure record to fetch the code pointer. Continuations (that escape only
downwards and therefore have a limited extent) are stack allocated, and free variable
accesses are lookups in the stack, therefore no heap allocated closure is needed. PIL-
SNER also performs a simple contification [49] optimization that will turn functions

55

that are always called with the same continuation into continuations, causing them
to be stack allocated.

Œuf [102] is a prototype compiler implementation from a subset of Gallina to
CompCert’s Cminor. As a prototype implementation, Œuf does not perform any
optimizations. Multi-argument functions are always curried and all functions are clo-
sure converted. Calls to known functions always enter through the code pointer in
the closure pair.

CakeML [129] is the most mature verified compiler for a functional language. It
offers the most advanced optimizations for known function calls [106] among the
compilers considered in this section. Compared to CertiCoq, CakeML performs fewer
optimizations for closure strategies but it manages to uncurry calls to unknown func-
tions, which CertiCoq currently does not. CakeML optimizes calls to known functions
that are closed, by avoiding extracting the function pointer from the closure record.
However, CakeML will always allocate closures for known functions with free vari-
ables. On the other hand CakeML, unlike CertiCoq, does optimize curried function
applications to unknown calls. In CakeML, all functions, regardless of their status as
known or escaping, are uncurried. Multi-argument applications of unknown functions
are implemented using a mismatch semantics that allows partial application. A run-
time check is performed to determine if the numbers of actual parameters matches
the arity of the function. If a function is applied to exactly as many arguments as it
expects, then its body is evaluated avoiding allocating closures for the intermediate
results of the uncurried application. If a function is applied to fewer arguments than
it expects, then a closure is allocated. If a function is applied to more arguments than
it expects, the body is evaluated and the result is applied to the remaining arguments.

To achieve these optimizations, CakeML uses an intermediate representation,
ClosLang, that is more complicated than λANF. It distinguishes two types of calls,
C-style calls for optimized known functions, and ML-style calls. Similarly, it has
three different kinds of function definitions: local anonymous functions, local recur-
sive functions, and a global immutable code table for closed known functions. In
order to recognize known calls that can be optimized the compiler performs addi-
tional flow analysis (which CertiCoq has avoided by “splitting” functions into known
and escaping instances).

Lambda Tamer [34] is a verified compiler for an imperative higher-order language.
It uses a naive closure-conversion transformation that does not optimize closures of
known functions.

4.5.2 Compilation-by-Transformation in other Compilers

Many modern compilers use a transformational approach for compilation. Here, I
review the transformational pipelines of GHC and OCaml, that have a similar design
with that of λANF.

56

GHC. GHC’s Core-to-Core optimization pipeline [69, 68] consists of many small
modular passes that are used to optimize the code. The pipeline has a simplifier,
that performs code simplifications including inlining, constant folding, eta-expansion,
and case-of-case transformation. These transformations are performed simultaneously
to take advantage of the cascade effect. This pass corresponds to our shrinking/in-
lining loop. The Core-to-Core pipeline performs a few other global transformations,
including strictness analysis, argument specialization, lambda lifting and static ar-
gument transformation (i.e., lambda dropping that removes arguments of functions
and introduces free variables). As in our λANF pipeline, the simplifier will run between
optimization passes to remove administrative redexes.

GHC’s lambda lifting [69] is, just like ours, selective and will not lambda lift every
function. The selection is based on whether lambda-lifting a function will increase
closure allocation in one of the callers (we consider this but also other design pa-
rameters). GHC’s lambda lifting will not split functions into known and unknown
instances. Lambda-lifted functions will be partially applied before an escaping oc-
currence.13 Because of our splitting strategy, our lambda-lifting transformation can
make a more fine-grained choice about which functions to lambda-lift (since different
calls to the same functions can call either the lambda-lifted or the original function,
i.e., the wrapper). Lambda lifting in GHC improves the performance of some pro-
grams but worsens the performance of others. The selective approach mitigates the
overhead.

Flambda. OCaml’s Flambda optimization pipeline [87, Chaper 21] has a similar
design. It features a pass that performs inlining and code simplification (constant
folding, dead code elimination). Other transformations include argument specializa-
tion, code motion transformations, removal of unused arguments, and lambda lifting.

Flambda’s lambda lifting works in a similar way to ours by splitting a function
into a known and an escaping instance, which is defined as a wrapper around the
known instance. The known wrapper will be inlined at known call sites. To mit-
igate the overhead of unknown calls going through the wrappers, if a function is
small enough Flambda will duplicate it and will use the original function at escap-
ing occurrences and the lambda-lifted function at known call sites. However, this
will miss the opportunity to eliminate closures of escaping recursive functions. In
our lambda lifting implementation the free variables will be projected just once out
of the environment, when they are first called. Flambda’s lambda lifting does not
always improve performance. It is not clear whether Flambda’s lambda lifting imple-
ments any heuristic decision about which functions to lambda lift or if it follows an
all-or-nothing approach.

13We cannot do that because partial application of multi-argument functions in not supported by
the semantics of λANF.

57

4.6 Conclusion

In this chapter, I presented the λANF optimizing pipeline of CertiCoq. The pipeline
performs various code simplification transformations to optimize the code. These
optimizations include dead code elimination, case and projection folding, function in-
lining and dead parameter elimination. Most importantly, the λANF pipeline optimizes
known function calls by implementing uncurrying and efficient closure strategies. The
design of the λANF pipeline follows a compilation-by program-transformation approach:
a number of simple and small program transformations are composed and produce
an optimized target that can be readily compiled to C or other first-order, low-level
representations. Optimizations are decomposed into small and simple transforma-
tions that are proved correct individually and they are then recomposed to achieve
optimizations that in other compilers are expressed as monolithic passes. In the next
chapter, I introduce the proof framework that is used to verify the λANF pipeline.

58

Chapter 5

Relational Proof Framework

To carry out a correctness proof for a program transformation, it is often convenient
to set up a more general relation and show that the input and the output of the
transformation inhabit the relation. First, let us examine the compiler correctness
specification that we wish to establish for the λANF pipeline. A compiler is correct if
the observable behaviors exhibited by the target program are included in observable
behaviors of the source program. For the language in question, λANF, a program has
two possible observable behaviors: it may terminate yielding a result or it may diverge.
We shall therefore prove that whenever the source program terminates producing a
result so does the target, and two results are observationally the same, and whenever
the source diverges so does the target program.1

Definition 5.1 (Behavioral refinement in λANF)
We say that program e′ refines the behavior of program e, written2 e ⊇B e

′, iff

(e ⇓ Res(v)⇒ ∃ v′, e′ ⇓ Res(v′) ∧ v ≈ v′) ∧ (termination)
e ⇑ ⇒ e′ ⇑ (divergence)

The relation ≈ asserts that two λANF values are observationally the same if they are
both constructed values with the same constructor tag and pairwise related arguments,
or if they are both function values.

if m = n and C1 = C2 and ∀i, vi ≈ v′i
C1(v1, . . . , vm) ≈ C2(v

′
1, . . . , v

′
n)

Clo(σ, fun f x = e) ≈ Clo(σ′, fun g y = e′)

A compiler is correct if ∀ e, e ⊇B comp(e).

1This describes a forward simulation. This is enough to show semantic preservation for determin-
istic languages. In presence of nondeterminism one must show a backward simulation. See Leroy [86]
for a relevant discussion.

2I will also use (σ, e) ⊇B (σ′, e′) for evaluation in a non-empty environment.

59

In the above statement any two functions are considered observationally the same.
For programs that run in isolation this is sufficient. A whole program is expected to
have a first-order type, an inductive datatype whose values (represented in memory
as data structures) can be traversed with appropriate knowledge of constructor rep-
resentations. In contrast, in ML-like languages, function values are not considered
“intensionally observable”, one does not expect to examine their internals and print
them out. To observe the result of a program when this is a function, the program
must be linked with another program that applies this function. I will discuss linking
extensively in the next section.

Notice that the refinement relation is not a symmetric relation: a program that has
no evaluation derivation—i.e., a program that is “stuck”—is trivially refined by any
target program. This specification allows the compiler to map a stuck source program
to any target program, permitting undefined behavior whenever the semantics of the
source program is ill-defined.3

Now that we know what to prove, we should examine how to prove it. Of course,
one can attempt to do this semantic-preservation proof by reasoning directly about
the semantics of the source and target languages. The semantic refinement cannot be
proved directly because it asserts nothing about related functions and hence, it does
not provide a strong enough induction hypothesis. One would have to strengthen the
specification by relating function values too. This is typically done syntactically by
using the compilation function itself: two functions are related if the target function
is the compilation of the source function. Such syntactic simulations depend on
the transformation that is being proved correct. Now imagine attempting to prove
the correctness of the λANF pipeline using syntactic simulations. One would have to
use seven different syntactic value relations! Changes in the transformation would
result in changes in the corresponding syntactic value relation. Modifications in the
semantics would incur modifications in all seven proofs.

The ad-hoc nature of reasoning with syntactic simulations can be avoided by
setting up a relation between the source and target languages that relates values se-
mantically and provides a more principled way of reasoning. Such relations act as a
proxy between the semantics of the languages and the correctness proof. They come
with a proof theory, often in form of compatibility lemmas or equational rules, that
enable compositional reasoning about program refinement. Modifying the semantics
requires adjusting the theory of the relation, but generally not the correctness proofs
of transformations. In addition, semantic relations can be used for proving the cor-
rectness of more than one transformation, facilitating proof reuse. Examples of such
relations in the literature include logical relations [16, 3], bisimulations [111, 63], and
more advanced relations that combine best of both worlds [65, 104]. For the cor-
rectness of the λANF pipeline we chose the method of logical relations. But before
getting into the details of the technical framework, let us first discuss some desirable
properties of a relation that is used for compiler correctness.

3By virtue of type safety, we known that the Gallina programs we are compiling are safe and
semantically well-defined. Restricting the compiler specification to source programs with well-defined
semantics is standard in compiler correctness theorems [86].

60

5.1 Relations for Compiler Correctness

What is a good relation for compiler correctness? At the very least, a relation for
compiler correctness should imply the behavioral refinement that we interested in
establishing, which in our case is definition 5.1. A relation that has this property
is said to be adequate. If we are only interested in compilation of whole programs
adequacy is enough. We can establish behavioral refinement for each transformation
separately, using the relation of choice, and then compose the individual refinement
proofs4 to derive the top-level correctness theorem.

However, the situation gets more complicated when we want to reason about
semantic preservation for programs that are compiled separately and linked at the
target level. To have a framework to talk about separate compilation and linking it
is useful to formalize a notion of linking λANF programs.

Definition 5.2 (Linking λANF programs)
Let eclient be a λANF program with exactly one external reference x and elib be a closed
λANF program. The linking operator substitutes the reference x with the result of eval-
uating the expression elib.

[x 7→ elib]eclient
def
= fun f [] = elib in let x = f [] in eclient

The linking operator can be generalized to more than one external reference.

Intuitively, we can think of the linking operator as a closing substitution. Only
that in λANF we cannot simply substitute an identifier for an expression or simply
write let x = elib in eclient for reasons related to the syntactic restrictions of ANF,
described in Section 4.3—so we use a zero-arity function.

Note: Although in the case of λANF the source and target languages of compilation
are the same, the linking specification and the following discussion generalize to a
cross-language setting as well.

5.1.1 Reasoning About Linking

Verification of a compiler with respect to not only whole-program compilation but
also separate compilation of program components is referred to as compositional com-
piler correctness. There are different notions of compositional compiler correctness,5

depending on how broad the notion of linking is. A compositional correctness theorem
may support:

1. Linking of programs produced by exactly the same compiler.

2. Linking of programs produced by different configurations of the same compiler.
Such configuration can use different optimization passes.

4Program refinement is a transitive relation.
5For an extensive discussion of the spectrum of compositional compiler correctness the reader

can look at Patterson and Ahmed [108].

61

3. Linking of programs produced by different compilers but are compiled from the
same source language.

4. Linking of programs produced by different compilers and are written in different
source languages. Such programs may or may not be expressible in the same
source language.

In this chapter, I will limit the discussion to linking programs that are compiled
from the same source language. The following statement captures correctness of
linking for cases 1-3 above.

Definition 5.3 (Correctness of linking)
Let comp1 and comp2 be compilers between the same source and target languages.
A program compiled using comp1 can be safely linked with a program compiled using
comp2 if [x 7→ e′]e ⊇B [x 7→ comp2(e

′)]comp1(e).

That is, linking at the target level is correct if it refines the behavior of a whole
source-level program produced by linking two programs at the source level.

Statement 5.3 trivially holds when the two source programs are compiled with the
same compiler (i.e., comp = comp1 = comp2) and the compilation function commutes
with linking (i.e., comp([x 7→ e′s]es) = [x 7→ comp(e′s)]comp(es)). Then, from the
compiler correctness statement we know that [x 7→ e′s]es ⊇B comp([x 7→ e′s]es). Using
the above equality, we derive [x 7→ e′s]es ⊇B [x 7→ comp(e′s)]comp(es) that proves the
case.

For the λANF pipeline this is not generally the case. For now let’s assume that we
are compiling all programs with exactly the same λANF optimizations. Depending on
what optimizations are used, we might be able to prove that compilation commutes
with linking but only up to alpha-conversion, as the binders will get renamed during
compilation. In this case, to establish the linking correctness theorem we would
have to prove that alpha-conversion preserves behavioral refinement, which requires
additional proof effort. The compiler could also choose to inline the zero-arity linking
function f of Definition 5.2 or closure convert f .6 We would then have to prove
additional lemmas (e.g ., strengthening and weakening lemmas for the semantics) to
reason about such cases. Generally speaking, changing the pipeline would require us
to reestablish the linking theorem, which might be a non-trivial task.

The situation gets trickier when we attempt to link programs that are compiled
with different configurations of the λANF pipeline that use different optimization passes.
This is a common scenario in compilation: separately compiled programs might have
been compiled with different optimization flags, or different versions of the compiler
(e.g ., one might add an argument specialization optimization to λANF and link pro-
grams compiled with the new transformation with programs that were compiled before
adding this pass). Then there is no general recipe for proving correctness of separate
compilation. Using a suitable relation to prove behavioral refinement can enable us to
derive correctness of separate compilation compositionally, just by showing that each

6Our compiler eliminates closures of known closed functions, such as f , but some other pipeline
might not perform this optimization.

62

of the pipelines inhabits the relation. In this case, we can prove a linking theorem
that is independent of the compilation function and only depends on the relation that
is used to prove correctness. Correctness of separate compilation for pipelines that
inhabit the relation is a corollary of the linking theorem.

To make things more formal, let R ⊆ exp× exp. We call this relation compatible
with linking if it satisfies the following.

∀es e′s et e′t, R (es, et) ⇒ R (e′s, e
′
t) ⇒ R ([x 7→ e′s]es, [x 7→ e′t]et)

Clearly, if R is also an adequate relation, then we can derive behavioral refinement
for linking for any two compilers that satisfy R . This property is also referred to
as horizontal compositionality. If R is also transitive, then it can be used to prove
correct each intermediate optimization and then such proofs can be composed to show
that the whole compiler is in R.

Unfortunately, compiler correctness relations for higher-order languages that are
adequate, compatible with linking, and transitive are extremely rare. There is only
one such type of relations in the literature, Parametric Inter-Language Simulations
(PILS), which are used to verify the PILSNER compiler [104]. The technical frame-
work of PILS is quite complicated, and according to the authors, the proof of transi-
tivity is very involved.

In this thesis, I show that if we restrict linking to programs compiled by compilers
that have exactly the same sequence of intermediate representations, then a compo-
sitional linking theorem can be obtained in a very lightweight and general way. In
the framework that I present in this chapter, each transformation is proved correct
with respect to a relation that is adequate and compatible with linking. The pipeline
then inhabits the composition of all intermediate relations that are used to prove
correctness. But the top-level relation is the composition of adequate and compatible
relations and as such, it is also an adequate and compatible relation that enables us
to prove a compositional compiler correctness theorem.

The linking theorem of λANF is similar in strength with the one of SepCom-
pCert [73]. However the proof technique is more general, and it allows strictly more
programs to be linked with each other. Unlike SepCompCert, it requires no modifica-
tion to the proof of each transformation. I make a more detailed comparison between
the two techniques in the related work section of this chapter (Section 5.4).

In the rest of this chapter, I present the relational framework that is used to prove
correct the λANF transformation, its extension to verification of separate compilation,
briefly the correctness result of each transformation, and the end-to-end, top-level
theorem of the λANF pipeline. I conclude with related work about proof techniques for
compiler verification.

5.2 Logical Relations

Logical relations let us avoid syntactically relating function values by using an ex-
tensional notion of function relatedness. With logical relations, two functions are

63

related if applying them to related arguments yields semantically related results.
Logical relations have a long history in programming languages and have been used
to prove a wide variety of properties about lambda calculus (and related languages).
Unary logical relations, which are predicates over just one program, have been used
to show properties such as strong normalization [128, 50] and type safety [16, 4]. Bi-
nary logical relations are a useful tool to show program equivalence and refinement.
Reynolds famously used a logical relation to show relational parametricity [114]. In
compiler correctness, logical relations are being used to show behavioral refinement.
Commonly, logical relations are indexed by the types of the language, but they can
be used in untyped settings as well [106, 1]. For CertiCoq, we use untyped logical
relations.

Step-indexing. Typically, defining a logical relation requires defining a different
relation for different syntactic category of the language—e.g ., an expression relation,
a value relation, etc. Let us, just for the purpose of this example, use ≺ for the
value relation and � for the expression relation. Using a simple untyped lambda
calculus with substitution semantics (so that we do not have to include evaluation
environments in our definitions), let us try to define the value relation for functions,
which states that functions are related if they map related inputs to related outputs.
The following definition captures the intuition described above.

λx1.e1 ≺ λx2.e2
def
= ∀ v1 v2, v1 ∼ v2 ⇒ e1{v1/x1} � e2{v2/x2}

Yet, the above definition has a problem: it is not a well-founded definition. In the
recursive call of ∼ nothing gets strictly smaller: the values v1 and v2 are arbitrary
values and not sub terms of the related functions. To overcome this, we use a step
index [16]: a natural number that gets strictly smaller in recursive calls and guarantees
that the recursion is well-founded. Using a step index, the above definition becomes:

λx1.e1 ≺k λx2.e2
def
= ∀ (i < k) v1 v2, v1 ∼i v2 ⇒ e1{v1/x1} �i e2{v2/x2}

That is, two functions are related at step index k, if for all arguments related at
some strictly smaller step index i the bodies of the function after substituting the
formal for the actual parameter, are also related at step index i. That means that
in order to apply two functions to see if they are related, we have to spend one
step. Intuitively, if two expressions are related at step index k then we can establish
behavioral refinement for the next k steps of computation—but we do not know what
happens after that. This becomes more clear with the definition of the expression
relation.

e1 �k e2
def
= ∀ c1 v1, e1 ⇓c1 v1 ⇒ ∃ c2 v2, e2 ⇓c2 v2 ∧ v1 ≺k−c1 v2

The expression relation states that if the source program evaluates to some value in
some amount of steps c1 that is smaller than the step index, then the target program
also evaluates to a value, and the two values are related for the remaining number of

64

steps. To show that a transformation is correct we prove that the source and target
program are related for all step indices: ∀ k, e1 �k e2.

5.2.1 Reasoning with the Logical Relation

To reason about logical relatedness of programs we use the so-called compatibility
lemmas of the logical relation. These lemmas state that relatedness of configurations
is preserved for various transitions of the two configurations. It enables us to establish
relatedness of two congifurations by the relatedness of subconfigurations.

First, let us adapt the logical relation from the previous section to the λANF lan-
guage. Since the λANF semantics is environment-based, the λANF expression relation re-
lates configurations (i.e., pairs of environments and expressions). Let us also slightly
change the notation that was used in the example above and use the symbol E with
prefix notation for the expression relation and the symbol V for the value relation
(which we will define later). A logical relation adapted to λANF is shown in the follow-
ing definition.

Ek(σ1, e1) (σ2, e2)
def
= ∀ c1 v1, (σ1, e1) ⇓c1 v1 ⇒

∃ c2 v2, (σ2, e2) ⇓c2 v2 ∧
Vk−c1(v1, v2)

An example of compatibility lemma is demonstrated below. Let C1 and C2 be
binding contexts (recall, from Section 3.2, that a binding context is a linear 1-hole
context with the hole at continuation position). Then we can show that any two
configurations (σ1, C1[e1]) and (σ2, C2[e2]) are related if the configurations (σ′1, e1) and
(σ′2, e2) are related, where σ′1 (resp. σ′2) is the environment obtained by interpreting
C1 (resp. C2) in the environment σ1 (resp. σ2). This is captured by the following
compatibility lemma.

Lemma 5.4 (Context application compatibility (simplified).)
Let C1 and C2 be binding contexts such that

• (σ1, E1) B Res(σ′1),

• (σ2, E2) B Res(σ′2), and

• Ek(σ′1, e1) (σ′2, e2)

Then we can derive that Ek(σ1, C1[e1]) (σ2, C2[e2]).

The above statement is slightly simplified in that it ignores the fuel and resource values
in the context interpretation judgment. We will come back to that in subsequent
sections. The proof of this lemma uses the composition lemmas for the evaluation
and context interpretation judgments of Section 3.3.3.

We state and prove such generic rules for different language constructs that we
then use to establish that transformation are in the logical relation.

65

5.2.2 Reasoning About Divergence

We aim to use a logical relation to reason about λANF transformations. As stated in
the previous section, the logical relation prescribes what happens when the source
program terminates, but leaves unspecified the behavior of the target program when
the source program diverges or get stuck. Yet, the refinement we wish to prove
asserts that whenever the source program diverges so does the target program. As I
discussed in Section 3.3, we can prove divergence preservation for a transformation
if we can prove that the number of steps that the source program performs is upper
bounded by some strictly monotonic function of the number of steps of the target
program (Lemma 3.10). To perform such reasoning we can extend the definition of
the logical relation to assert that some relation between the source and target steps
of execution holds. For example, the following logical relation asserts that the target
steps is always greater or equal to the source steps.

Ek(σ1, e1) (σ2, e2)
def
= ∀ c1 v1, (σ1, e1) ⇓c1 v1 ⇒

∃ c2 v2, (σ2, e2) ⇓c2 v2 ∧
c1 ≤ c2 ∧
Vk−c1(v1, v2)

For two programs that satisfy the above logical relation we can prove, using
Lemma 3.10, that whenever e1 diverges so does e2. Unfortunately, not all trans-
formations satisfy the simple relation c1 ≤ c2 for the steps of the source c1 and the
steps of the target c2. To be able to establish the relation for programs that whose
steps are related in different ways, we parameterize the logical relation with a rela-
tional postcondition Q that captures an arbitrary relationship between the fuel values
of the two programs. Such relational postcondition can be instantiated differently for
each pair of programs that we want to relate. This is reflected in the following logical
relation definition.

Ek(σ1, e1) (σ2, e2) {Q}
def
= ∀ c1 v1, (σ1, e1) ⇓c1 v1 ⇒

∃ c2 v2, (σ2, e2) ⇓c2 v2 ∧
Q c1 c2 ∧
Vk−c1(v1, v2)

This is not a complete definition: the definition of value relation also needs to be
parameterized by a postcondition in order to pass it to the expression relation. To
make this clear, let us define the value relation for closure values. Observe that the
value relation we defined for untyped lambda calculus with substitution semantics
relates function values. When an environment semantics is used, we need to relate
closure values (i.e., pairs of code and environment) in order to assign values to the
free variables of the functions.

66

Vk(Clo(σ1, fun f x = e1), Clo(σ2, fun g y = e2)) {Q}
def
=

∀ i < k v1 v2,
V i(v1, v2) {Q} ⇒
len(x) = len(v1) ⇒
len(y) = len(v2) ∧
E i(σ′1, e1) (σ′2, e2) {Q}

where σ′1 = σ1[x 7→ v1, f 7→ Clo(σ1, fun f x = e1)]
and σ′2 = σ2[y 7→ v2, g 7→ Clo(σ2, fun g y = e2)].

Two closure values are related if for any two lists of pairwise related values the
configurations consisting of the bodies of the functions and the closure environments
extended with appropriate bindings are related. The closure environments are re-
lated with bindings that bind the formal parameters to the actual parameters and
the function name to the closure value, which is needed when the function is recur-
sive. The definition also requires that the actual parameters of the source function
have the same length as its formal parameters, and ensures the same for the target
function, essentially requiring that related functions have the same arity. The value
relation takes a postcondition as parameter which is the postcondition at which the
two function bodies are related.

Now, the value relation is also parameterized by the postcondition. This post-
condition is enforced at the function bodies of related closures. Going back to the
expression relation, we need to instantiate the postcondition parameter of the value
relation. The most obvious choice would be to use the same Q parameter for relating
both the fuels of the current configurations and future executions of results (that
may contain closures). This however is too restrictive: it might be true when we are
considering whole program executions, but it might not hold when we consider exe-
cutions of subcomputations of the two programs, which may be related at a different
postcondition. By imposing the same postcondition on the current computations and
on future application of the results, we are forced to relate the current configurations
with the same postcondition that holds for whole function executions. However, to
achieve compositional reasoning we must be able to allow the postcondition of the
current configurations to vary independently when we are considering transitions of
the configurations we are trying to relate.

As an example, consider the following simple program. As in previous examples,
I deviate slightly from the λANF syntax for conciseness and readability. I also use
standard notation for natural numbers and lists (:: for cons and [] for nil).

esrc
def
= fun f x l = x::x::l in

let h = 42 in

let t = [] in

f h t

Assuming that all language operations take unary cost, the program runs in 5
units of time. Now consider that we inline the function f in the above program and

67

we obtain the program etrg, in which the definition of f has been inlined and deleted
since is not used anymore.

etrg
def
= let h = 42 in

let t = [] in

h::h::t

The inlined program is more efficient and executes in just 3 units of time.
We now wish to prove that for any environments σsrc and σtrg we have that

Ek(σsrc, esrc) (σtrg, etrg) {Q} for Q (csrc, ctrg)
def
= csrc <= ctrg + 2. This obviously

holds for the whole executions of the two programs. However, we wish to reason com-
positionally about the relatedness of the two programs, showing that the relatedness
of the two top-level configurations follows from the relatedness of subconfigurations.
For that, we can use Lemma 5.7.

Let us apply the lemma for C1 = fun f x l = x::x::l in [·], e1 = e′src, C2 = [·]
and e2 = etrg, where e′src is defined below.

e′src
def
= let h = 42 in

let t = [] in

f h t

We have that

(σsrc, fun f x l = x::x::l in [·]) B Res(σ′src) and (σtrg, [·]) B Res(σtrg)

where σ′src = σsrc[f 7→ Clo(σsrc, fun f x l = x::x::l)].
To prove the goal, we need to show that Ek(σ′src, e′src) (σtrg, etrg) {Q}. But these

configurations are no longer related by the logical relation for the Q we picked earlier!
The source program needs 4 execution steps while the target still needs 3 executions
steps, which invalidates the postcondition. Because of lack of postcondition mono-
tonicity, we are forced to make a choice for Q for the whole program and stick with
it during the whole proof, as we execute more instructions of the two programs.

To get around this issue, we decouple the postcondition to a local postcondition
and a global postcondition. The local postcondition holds locally for the executions of
the two programs, while the global one holds for future executions of the results. The
logical relation is shown in the following definition. QL denotes the local postcondition
and QG the global postcondition.

Ek(σ1, e1) (σ2, e2) {QL;QG}
def
= ∀ c1 v1, (σ1, e1) ⇓v1 c1 ⇒

∃ c2 v2, (σ2, e2) ⇓v2 c2 ∧
QL c1 c2 ∧
Vk−c1(v1, v2) {QG}

68

Using this definition, we can establish the postcondition of choice for the top-level
program and allow it to vary when we perform local reasoning steps.

5.2.3 Fuels and Traces

So far the logical relation definitions use a natural number to denote the number of
steps that a program takes. However, the λANF semantics uses an abstract notion of
fuel to model the execution steps and also an abstract notion of trace to profile other
aspects of the computation. Both the fuel and the trace are represented as commuta-
tive monoids. Recall the definition of fuel 〈F , 〈+〉F , 〈0〉F〉 and trace 〈T , 〈+〉T , 〈0〉T 〉
monoids from Section 3.3.2. The fuel value acts as a virtual clock that winds down
as the program is being evaluated. The program fails with an out-of-time exception
(OOT) if there is not enough fuel to carry out a computation. The trace value is used
to profile other information about the program’s execution.

The logical relation that I will define in this chapter also treats the fuel and trace
monoids abstractly. The postconditions that are used for the λANF logical relations are
relations over pairs of a fuel and a trace value. The proof of each transformation is
also parametric in the fuel and trace monoids and also the postcondition, which is only
required to obey certain restrictions. We derive a top-level theorem by instantiating
each proof with concrete fuel and trace types and also a concrete postcondition, which
is typically different for each program. If the postcondition implies that the source
steps are upper bounded by some strictly monotonic function of the target steps, then
we can also derive divergence preservation.

Although we are only interested in relating the fuel values, the trace value is also
helpful to express the bound we want to establish. To show divergence preservation,
I use the trace monoid to count separately different kinds of steps that a program
takes. In particular, the execution trace keeps a count of application steps and a
count of nonapplication steps. This is particularly useful to express the bound for
the inlining transformation (Section 6.1.1). Later on, in Chapter 7, where I extend
the logical relation to reason about space consumption, I will use the trace monoid
to profile the amount of memory that the program uses.

5.2.4 CertiCoq’s Logical Relations

For the verification of the λANF pipeline I will use two different logical relations: one
for transformations that do not globally change the way functions are represented
and applied (i.e., all transformations except closure conversion), and a different one
for closure conversion. The first one symmetrically relates closure values with other
closure values (so I will refer to it as symmetrical7 to distinguish it from the closure-
conversion relation). The second one relates closure values with closure records con-
structed by closure conversion. The definitions of the logical relations are shown in
Figure 5.1 and Figure 5.2 respectively. Most of the definitions are the same except

7Not to be confused with the standard notion of a symmetric relation. The logical relation is not
a symmetric relation.

69

for the closure value relation. The definition of the logical relation consists of an
expression relation, a value relation, a variable relation, and an environment relation.
We also define the auxiliary result relation since in our formalization final results of
computations can be either values or out-of-time exceptions. I go through each one
of these definitions separately.

Value relation

Vk(C1(v1), C2(v2)) {Q}
def
= C1 = C2 ∧ Vk(v1, v2) {Q}

Vk(Clo(σ1, fun f x = e1), Clo(σ2, fun g y = e2)) {Q}
def
=

∀ i < k v1 v2,
V i(v1, v2) {Q} ⇒
len(x) = len(v1) ⇒
len(y) = len(v2) ∧
E i(σ′1, e1) (σ′2, e2) {Q;Q}

Where σ′1 = σ1[x 7→ v1, f 7→ Clo(σ1, fun f x = e1)]
and σ′2 = σ2[y 7→ v2, g 7→ Clo(σ2, fun g y = e2)].

Vk(v1, v2) {Q}
def
= False For all other cases.

Result relation

Rk(OOT,OOT) {Q} def
= True

Rk(Res(v1),Res(v2)) {Q}
def
= Vk(v1, v2) {Q}

Rk(r1, r2) {Q}
def
= False For all other cases.

Expression relation

Ek(σ1, e1) (σ2, e2) {QL;QG}
def
=

∀c1 r1 t1, ↑c1 ≤ k ⇒
(σ1, e1) ⇓c1 t1 r1 ⇒
∃ c2 r2 t2, (σ2, e2) ⇓c2 t2 r2 ∧ QL(c1, t1) (c2, t2) ∧ Rk−↑c1(r1, r2) {QG}

Variable relation

X k(x, σ1) (y, σ2) {Q}
def
= ∀ v1, σ1(x) = v1 ⇒ ∃ v2, σ2(y) = v2 ∧ Vk(v1, v2) {Q}

Environment relation

S ` Ck(σ1, σ2) {Q}
def
= ∀ x ∈ S, X k(x, σ1) (x, σ2) {Q}

Figure 5.1: The symmetrical logical relation.

70

Value relation

Vk
CC(C1(v1), C2(v2)) {Q}

def
= C1 = C2 ∧ Vk

CC(v1, v2) {Q}

Vk
CC(Clo(σ1, fun f x = e1), CCC(Clo(σ2, fun g γ :: y = e2), env)) {Q} def

=
∀ i < k v1 v2,
V i

CC(v1, v2) {Q} ⇒
len(x) = len(v1) ⇒
len(y) = len(v2) ∧
E iCC(σ′1, e1) (σ′2, e2) {Q;Q}

Where σ′1 = σ1[x 7→ v1, f 7→ Clo(σ1, fun f x = e1)
and σ′2 = σ2[γ 7→ env, y 7→ v2, f 7→ Clo(σ2, fun g y = e2).

Vk
CC(v1, v2) {Q}

def
= False For all other cases.

Result relation

Rk
CC(r1, r1) {Q} Same as before.

Expression relation

EkCC(σ1, e1) (σ2, e2) {QL;QG} Same as before.

Variable relation

X k
CC(x, σ1) (y, σ2) {Q} Same as before.

Environment relation

S ` CkCC(σ1, σ2) {Q} Same as before.

Figure 5.2: Logical relation for closure conversion.

71

Expression relation. The symmetrical expression relation (Figure 5.1) is denoted
Ek(σ1, e1) (σ2, e2) {QL;QG}. The subscripted symbol ECC (Figure 5.2) is used to
denote the expression relation used for closure conversion. The first argument k is
the usual step index that is needed for the well-foundedness of the definition. The
next two arguments are the configurations (pairs of environments and expressions)
that are being related. The last two arguments are the local postcondition and global
postcondition that are relations over two pairs of fuel and trace (QL, QG ⊆ (F ×T)×
(F × T)). The relation asserts that if the the source configuration evaluates to some
result and trace with some fuel value that is less or equal to the step index, then
there exists target fuel, trace, and result values, such that the evaluation of the target
configuration with the target fuel produces the target result and trace. Furthermore,
the two results are related by the result relation for the remaining step indices, after
subtracting the consumed fuel from the initial step index. As explained earlier, in
order to support divergence preservation, we also require that the two pairs of fuel
and trace are related by the local postcondition. To compare the fuel value with the
step index, which is a natural number, I use the ↑ : F → N homomorphism defined
in Section 3.3.2.

Note: In the mechanized development and also in Chapter 7, the postconditions
are relations over triples of configurations, fuel values, and trace values. This is useful
to express fuel bounds that are dependent on the size of the source term. Since the
bounds that are required to establish preservation of divergence are not dependent
on the source configurations, in the paper presentation of the logical relations of this
chapter, I use postconditions that are relations over pairs of a fuel a trace value.

Result relation. The result relation is denoted Rk(r1, r2) {Q} (or RCC for the
closure-conversion relation). It is true whenever the two results are both out-of-time
exceptions or related values, and false otherwise.

Value relation. The value relation relates values of the language and it is denoted
Vk(v1, v2) {Q} (or VCC for the closure-conversion relation). It is the only definition
that differs between the two logical relations. In both cases, two constructed values
are related if they are constructed with the same constructor, and the arguments
of the two constructors are of the same length and pairwise related with the value
relation. Two closure values are related with V at some step index k if they map lists
of arguments related at some step index i < k to configurations related at step index
i. Each configuration consist of the body of the function part of the corresponding
closure and the environment part of the closure extended with appropriate bindings.
The closure environments are extended with the formal parameters of each function
bound to the values of the actual parameters, and the function name bound to the
closure value, which is needed for recursive functions. Recall that the closure envi-
ronment is the evaluation environment at the time of function definition and contains
the values of the function’s free variables.

For the closure-conversion relation VCC, the value relation for closure values is
different. In this relation, a closure value is not related with another closure value,

72

but with an explicitly constructed closure record, created with the closure constructor
CCC. The code component of the closure record is a closure8 and the environment
component an arbitrary value. We require that the second function definition has an
additional argument γ for the closure environment. The two closure values are related
as before, with the only difference that in the environment of the second configuration
the argument γ is mapped to the value of the environment in the closure record.

Note: I use the notation Vk(v1, v2) {Q} to denote that the two lists v1 and v2
have the same number of elements that are pairwise related.

Variable and environment relations. The variable relation is denoted
X k(x, σ1) (y, σ2) {Q} (or XCC for the closure-conversion relation). It asserts
that whenever x is defined in the environment then so is y, and, furthermore, that
their values are related. As with the value relation, I will also use the variable relation
with lists of variables meaning that the lists have the same number of elements that
are pairwise related with the variable relation. The environment relation is denoted
S ` Ck(σ1, σ2) {Q} (or CCC for the closure-conversion relation) and it is defined in
terms of the variable relation. It asserts that any binder x that belongs to the set S
and the domain of σ1 it also belongs to the domain of σ2, and the values of the two
environments at x are related with the value relation.

Mnemonic: E is used for the expression relation and V is used for the value
relation. C is used for relating environments, which provide contexs for the free
variables of the term. X is used for the variable relation, named after the ubiquitous
variable name x .

5.2.5 Reasoning with Local and Global Postconditions

The expression logical relation is parameterized with a local and a global postcon-
dition. The local postcondition relates the fuel and trace values of the two program
executions, whereas the global one holds for later executions of the (possibly higher-
order) results. Separating the global from the local postcondition allows the local
postcondition to vary independently from the global postcondition which enables
compositional reasoning.

The compatibility lemmas of the logical relation, which we will state in the follow-
ing section, enable us to reason compositionally about the executions of two programs.
We state and prove these lemmas for abstract postconditions that satisfy certain re-
quirements. In particular, will impose some conditions in the local and global post-
conditions that assert that the relations are preserved when different constructors of
the language are evaluated.

To make this clear let us consider the context compatibility lemma (Lemma 5.7).
The statement of this lemma will now use the expression relation that is extended
with the local and the global postcondition:

8Observe that even after closure conversion function values are still closures. This is because
functions are not necessarily closed yet. They may contain free variables that refer to other closed
functions. After hoisting, all functions will be defined at the same mutually-recursive function
bundle, and all functions become closed.

73

(σ1, E1) Bc1 t1 Res(σ′1) ⇒
(σ2, E2) Bc2 t2 Res(σ′2) ⇒

E (σ′1,e1)(σ′2, e
′
2) Q1 {QG; } ⇒

Ek(σ1, C1[e1]) (σ2, C2[e2]) {Q2;QG}

Where c1 and c2 the fuel values and t1 and t2 are trace values (which were elided
from the previous statement of the lemma). QG is the global postcondition that
remains invariant throughout the execution of two configurations. Q1 and Q2 are the
local postconditions for the two congifurations. As we argued in Section 5.2.1, the
local postcondition in the assumption and the goal need not necessarily be the same.

To prove this lemma we need to make certain assumptions about Q1 and Q2.
First, we need to be able to derive Q2 for the fuel and trace values of the evalua-
tion of the configurations (σ1, C1[e1]) and (σ2, C2[e2]) from Q1 for the fuel and trace
values of the evaluation of the configurations (σ′1, e

′
1) and (σ′2, e

′
2). Let c, t (resp.

c′, t′) be the fuel and trace values of the configuration (σ′1, e1) (resp. (σ′2, e2)) for
which we know Q1 (c, t) (c′, t′). Then, because of the compositionality of the inter-
pretation judgment with the evaluation judgment, we know that the fuel and trance
of configuration (σ1, C1[e1]) (resp. (σ2, C2[e2])) will be c〈+〉Fc1 and t〈+〉T t1 (resp.
c′〈+〉Fc2 and t′〈+〉T t2). To prove the compatibility lemma, we need to establish
that Q2 (c〈+〉Fc1, t〈+〉T t1) (c′〈+〉Fc2, t′〈+〉T t2). This is described by the following
predicate.

Definition 5.5 (Postcondition compatibility, context application)
PostCompatCtx Q1 Q2 c1 t1 c2 t2 holds iff whenever

Q1(c, t) (c′, t′)

we also have

Q2(c〈+〉Fc1, t〈+〉T t1) (c′〈+〉Fc2, t′〈+〉T t2).

Furthermore, if the source configuration times out during execution of C1, we
will need to provide a target fuel value that makes the target configuration time out
as well. We could pick the obvious fuel value 〈0〉F , for which the target configura-
tion trivially times out with trace 〈0〉T . But then we would need to establish that
Q2(c, t) (〈0〉F , 〈0〉T) for some arbitrary c and t, which does not hold for the postcon-
ditions we are interested. Instead, we assume that fuel(C1) ≤F fuel(C2), where
fuel(C) is the (statically known) amount of fuel that is required for the execution of
the binding context C. Then, we require that the postcondition holds for the same
fuel values (regardless of the trace value).9

Definition 5.6 (Postcondition is reflexive for fuel.)
PostRefl Q holds iff Q (c, t) (c, t′).

9This does not hold of the concrete postcondition that we use for inlining. Therefore, we cannot
use this compatibility lemma in the proof of inlining.

74

Now we can state and prove the context compatibility lemma in presence of post-
conditions.

Lemma 5.7 (Context application compatibility.)
Assume that PostRefl Q2 and PostCompatCtx Q1 Q2 c1 t1 c2 t2.

Let C1 and C2 be binding contexts such that

• fuel(C1) ≤F fuel(C2),

• (σ1, E1) Bc1 t1 Res(σ′1),

• (σ2, E2) Bc2 t2 Res(σ′2), and

• Ek(σ′1, e1) (σ′2, e2) {Q1;QG}

Then we can derive that Ek(σ1, C1[e1]) (σ2, C2[e2]) {Q2;QG}.

In the rest of this section, I will define the different conditions that we need
to impose on local and global postconditions when proving compatibility lemmas
for the logical relations. These rules assert that the postconditions are preserved
when different constructors of the language are evaluated. In the next section, I will
state more compatibility lemmas of the logical relation that will make use of these
definitions.

In most of the compatibility lemmas, we will need to establish a postcondition
when both programs have zero fuel remaining and they both time out throwing an
out-of-time exception. This is captured by the following definition.

Definition 5.8 (Postcondition holds for zero)
PostZero Q holds iff Q(〈0〉F , 〈0〉T) (〈0〉F , 〈0〉T).

Similarly, we need to be able to establish the postcondition when the two programs
terminate by returning some (related) values.

Definition 5.9 (Postcondition holds for return)
PostRet Q holds iff Q(〈ret(x)〉F , 〈ret(x)〉T) (〈ret(y)〉F , 〈ret(y)〉T).

We are also required to assume that the postcondition is preserved when both the
source and target perform one evaluation step.

Definition 5.10 (Postcondition compatibility)
PostCompat Q1 Q2 e1 e2 holds iff whenever

Q1(c1, t1) (c2, t2)

we also have

Q2(c1〈+〉F〈e1〉F , t1〈+〉T 〈e1〉T) (c2〈+〉F〈e2〉F , t2〈+〉T 〈e2〉T).

75

We use two different postconditions, Q1 and Q2, to allow the postconditions be
different before and after preforming the evaluation step (for the reasons explained
in Section 5.2.1).

We use a slightly different compatibility rule is to establish the local postcondition
for programs whose outermost constructors are let-bound applications (nontail calls).
In this case, from the postcondition of the function and the postcondition of the
execution of the rest of the program, we derive the postcondition for the execution of
the let-bound call.

Definition 5.11 (Postcondition compatibility for let-bound application)
PostLetApp Q1 Q2 Q3 P e1 e2 holds iff whenever

Q1(c1, t1) (c2, t2) and Q2(c
′
1, t
′
1) (c′2, t

′
2)

we also have

Q3(c1〈+〉c′1〈+〉〈e1〉, t1〈+〉t′1〈+〉〈e1〉) (c2〈+〉c′2〈+〉〈e2〉, t2〈+〉t′2〈+〉〈e2〉).

With these definitions in hand, we can now state the compatibility lemmas for
the logical relation.

5.2.6 Compatibility Lemmas

The compatibility lemmas assert that the relation is preserved during the execution
of two programs.

Note: Properties that hold for both for both logical relations will be denoted
with † next to the name of the theorem. Unless this symbol is used a theorem holds
only for the relation that it is stated for.

The lemma for constructor states that two constructor expressions are related if
1. their variable arguments are pairwise related in the two environments, and 2. if for
every pair of lists of pairwise related values the rest of the two programs are related
in the environments extended to bind the let-bound variables two newly allocated
constructed values. QG is the global postcondition while Q1 is the local poscondition
that holds for the evaluation of the continuations of the contructors, and Q2 is the
local postcondition that is eshtablished for the two expressions.

Lemma 5.12 (Compatibility (constructor) †)
Assume that PostZero Q2 and
PostCompat Q1 Q2 (let x1 = C(y1) in e1) (let x2 = C(y2) in e2).

If

• X k(y1, σ1) (y2, σ2) {QG}

• ∀ v1 v2, Vk(v1, v2) {QG} ⇒ Ek(e1, σ1[x1 7→ C(v1)]) (e2, σ2[x2 7→ C(v2)]) {Q1;QG}

then Ek(let x1 = C(y1) in e1, σ1) (let x2 = C(y2) in e2, σ2) {Q2;QG}.

The rule for projections is in similar spirit.

76

Lemma 5.13 (Compatibility (projection) †)
Assume that PostZero Q2 and
PostCompat Q1 Q2 (let x1 = y1.i in e1) (let x2 = y2.i in e2).

If

• X k(y1, σ1) (y2, σ2) {QG}

• ∀ v1 v2, Vk(v1, v2) {QG} ⇒ Ek(e1, σ1[x1 7→ v1]) (e2, σ2[x2 7→ v2]) {Q1;QG}

then Ek(let x1 = y1.i in e1, σ1) (let x2 = y2.i in e2, σ2) {Q2;QG}.

The lemma for case analysis requires that the two scrutinees are related in the
environment, that the patterns are pairwise the same and that expressions of each
pattern are pairwise related in the current environment.

Lemma 5.14 (Compatibility (case analysis) †)
Assume that PostZero Q2 and
PostCompat Q1 Q2 (case y1 of [Ci → ei]i∈I) (case y2 of [Ci → e′i]i∈I).

If

• X k(y1, σ1) (y2, σ2) {QG}

• ∀ i, Ek(ei, σ1) (e′i, σ2) {Q1;QG}

then Ek(case y1 of [Ci → ei]i∈I , σ1) (case y2 of [Ci → e′i]i∈I , σ2) {Q2;QG}.

Two function definitions are related if the rest of the programs are related in the
current environment extended with bindings that map the function names to the
closure consisting of the function bodies and the current environments.

Lemma 5.15 (Compatibility (function definition) †)
Assume that PostZero Q2 and
PostCompat Q1 Q2 (fun f1 x1 = e′1 in e1) (fun f2 x2 = e′2 in e2).

If

• Ek(e1, σ′1) (e2, σ
′
2) {Q1;QG}

where σ′1 = σ1[f1 7→ Clo(fun f1 x1 = e′1, σ1,])
and σ′2 = σ2[f2 7→ Clo(fun f2 x2 = e′2, σ2,])

then Ek(fun f1 x1 = e′1 in e1, σ1) (fun f2 x2 = e′2 in e2, σ2) {Q2;QG}.

The lemma for return simply requires that the returned identifiers are related in
the current environments.

Lemma 5.16 (Compatibility (return) †)
Assume that PostZero Q and PostRet Q

If

77

• X k(x1, σ1) (x2, σ2) {QG}

then Ek(ret(x1), σ1) (ret(x2), σ2) {Q;QG}.

So far, all of the compatibility lemmas are the same for the two logical relations.
The compatibility lemmas for function calls (nontail let-bound calls and tail calls)
are different for the two relations, since functions are related differently by the two
relations.

In the symmetrical relation, to show that two let-bound function applications
are related we require that the identifiers for the applied functions as well as the two
lists of arguments are related in the source and target environments. Additionally, we
require that the rest of the programs are related in the current environments extended
with related mappings for let-bound variables. As usual we require the postcondition
to satisfy PostZero. But unlike the previous lemma we also require (using PostLetApp)
that if the global postcondition QG holds for the execution of the function calls and
the local postcondition Q1 holds for the evaluation of the rest of the programs, then
the local postcondition Q2 holds for the evaluation of the two function calls.

Lemma 5.17 (Compatibility (let-bound application))
Assume that PostZero Q2 and
PostLetApp PG Q1 Q2 (let x1 = f1 y1 in e1) (fun f2 y2 = e2 in).

If

• X k(f1, σ1) (f2, σ2) {QG}

• X k(y1, σ1) (y2, σ2) {QG}

• ∀ v1 v2, Vk(v1, v2) {QG} ⇒ Ek(e1, σ1[x1 7→ v1]) (e2, σ2[x2 7→ v2]) {Q1;QG}

Then Ek(let x1 = f1 y1 in e1, σ1) (let x2 = f2 y2 in e2, σ2) {Q2;QG}.

To show that two tail calls are related, we only require that the identifiers being
applied and the lists of arguments are related in the two environments. We assume
that the postcondition holds if the two programs time out (PostZero) and that if
the global postcondition holds for the execution of the two functions, then the local
postcondition holds for the execution of the applications (PostCompat).

Lemma 5.18 (Compatibility (tail-call))
Assume that PostZero Q and PostCompat QG Q (f1 y1) (f2 y2).

If

• X k(f1, σ1) (f2, σ2) {QG}

• X k(y1, σ1) (y2, σ2) {QG}

Then Ek(f1 y1, σ1) (f2 y2, σ2) {Q;QG}.

78

To relate function applications before and after closure conversion, we need to
convert function calls to application of closure records that project the function and
environment out of the explicitly constructed closure records. We also need to state
different rules for the preservation of the postconditions. The rules are similar to those
of the symmetrical relation but they account for the fuel and trace of projecting the
code and the environment from the closure pair.

Definition 5.19 (Postcondition compat. for tail app., closure conversion)
Let capp

def
= 〈fcode fenv :: y2〉〈+〉〈let fenv = f2.2 in . . .〉〈+〉〈let fcode = f2.1 in . . .〉

and tapp
def
= 〈fcode fenv :: y2〉〈+〉〈let fenv = f2.2 in . . .〉〈+〉〈let fcode = f2.1 in . . .〉.

PostAppCC Q1 Q2 holds iff whenever

Q1(c1, t1) (c2, t2)

we also have

Q2(c1〈+〉〈f1 x1〉, t1〈+〉〈f1 x1〉) (c2〈+〉capp, t2〈+〉tapp).

Definition 5.20 (Postcondition compat. for let app., closure conversion)
Let capp

def
= 〈let x2 = fcode fenv :: y2 in . . .〉〈+〉〈let fenv = f2.2 in . . .〉〈+〉〈let fcode =

f2.1 in . . .〉
and tapp

def
= 〈let x2 = fcode fenv :: y2 in . . .〉〈+〉〈let fenv = f2.2 in . . .〉〈+〉〈let fcode =

f2.1 in . . .〉.
Also, let e′1

def
= let x1 = f1 x1 in e1.

PosLetAppCC Q1 Q2 Q3 holds iff whenever

Q1(c1, t1) (c2, t2) and Q2(c
′
1, t
′
1) (c′2, t

′
2)

we also have

Q3(c1〈+〉c′1〈+〉〈e′1〉, t1〈+〉t′1〈+〉〈e′1〉) (c2〈+〉c′2〈+〉capp, t2〈+〉t′2〈+〉tapp).

We can now state compatibility lemmas for function application for the closure-
conversion relation. The let-bound function application lemma states that applying a
function is related to a closure application (that is, applying a function after projecting
the code and the environment out) if the identifiers of the function and the arguments
are related in the current environment and the rest of the programs are related when
the current environments are extended with related values. Notice, that in the target
environment we also need to add bindings for the identifiers that are used for the code
and the environment. We achieve that by using the binding-context interpretation
relation.

Lemma 5.21 (Compatibility (let-bound application, closure conversion))
Let e′2 = let fcode = f2.1 in let fenv = f2.2 in let x2 = fcode fenv :: y2 in e2 and
that the identifiers fcode and fenv are distinct and different from f2 and y2.

79

Assume that PostZero Q and PostLetAppCC QG Q1 Q2.

If

• X k
CC(f1, σ1) (f2, σ2) {QG}

• X k
CC(y1, σ1) (y2, σ2) {QG}

• ∀ v1 v2 σ′2, Vk
CC(v1, v2) {QG} ⇒

(σ2, let fcode = f2.1 in let fenv = f2.2 in []) B Res(σ′2) ⇒
EkCC(e1, σ1[x1 7→ v1]) (e2, σ

′
2[x2 7→ v2]) {Q1;QG}

Then EkCC(let x1 = f1 x1 in e1, σ1) (e′2, σ2) {Q2;QG}.

A tail call is related to a closure-converted tail call if the identifiers for the function
and the arguments are related in the current environment.

Lemma 5.22 (Compatibility (tail application, closure conversion))
Let e′2 = let fcode = f2.1 in let fenv = f2.2 in fcode fenv :: y2 and assume that the
identifiers fcode and fenv are distinct and different from f2 and y2.

Assume that PostZero Q and PostAppCC QG Q.

If

• X k
CC(f1, σ1) (f2, σ2) {QG}

• X k
CC(y1, σ1) (y2, σ2) {QG}

Then EkCC(f1 x1, σ1) (e′2, σ2) {Q;QG}.

This concludes the compatibility lemmas for the two relations.
It is useful to define a shorthand for assuming the set of requirements over the

postconditions that allow the compatibility lemmas to be proved.

Definition 5.23 (Postcondition properties shorthand)
PostProperties QG Q1 Q2 holds whenever the following are satisfied.

• PostZero Q2

• PostRet Q2

• PostCompat Q1 Q2

• PostLetApp QG Q1 Q2

80

5.2.7 Properties of the Logical Relations

In this section I present some important properties of the logical relations. As usual,
both logical relations are (anti)monotonic in the step index, meaning that whenever
the relation holds for a value of the step index it also holds for all smaller values of
the step index.

Lemma 5.24 (Step index monotonicity †)
∀ i ≤ k, Ek(σ1, e1) (σ2, e2) {QL;QG} ⇒ E i(σ1, e1) (σ2, e2) {QL;QG}.

The same holds for the value, result, variable and environment relation.
We can also prove that the logical relation is monotonic in the local postcondi-

tion. Observe that this property hold because we have decoupled the local and the
global postcondion. If we had used the same postcondition for the local and global
postconditions, we would have been able to prove monotonicity, because the global
postcondition occurs in both negative and positive in the definition of the logical
relation

Lemma 5.25 (Local postcondition monotonicity †)
∀ Q ⊇ Q′, Ek(σ1, e1) (σ2, e2) {Q;QG} ⇒ E i(σ1, e1) (σ2, e2) {Q′;QG}.

The symmetrical logical relation is also reflexive. For any expression e and for any
two environments that are related in the set of free variables of the expression e, then
the configuration (σ1, e) is related to the configuration (σ2, e). Observe that such a
property does not hold for the closure-conversion relation since the closure-conversion
relation is inhabited only by a suitably closure-converted program.

Lemma 5.26 (Reflexivity)
Assume that PostProperties QG Q Q and PostProperties QG QG QG and Q ⊇ QG.

If fv(e) ` Ck(σ1, σ2) {Q} then Ek(σ1, e) (σ2, e) {QL;QG}.

Proof By induction on the step index and nested induction on the expression e.
Each case follows from the corresponding compatibility lemma (therefore, we need to
assume the required properties for the postconditions hold). The condition that the
local postcondition implies the global postcondition is needed in order to show that
adding the same two function definitions (satisfying the local postcondition by the
induction hypothesis) in two related environments, gives us related environments. The
condition that PG also satisfies PostProperties is required by the induction hypothesis.
�

Two other crucial properties of the logical relation are adequacy and compatibility
with linking (horizontal compositionality). Adequacy of the logical relation for termi-
nating behaviors follows trivially for the definition of the expression logical relation.
In order to prove adequacy for nonterminating behaviors we shall assume that the
local postcondition implies that the fuel value of the source is upper bounded by some
strictly monotonic function of the target fuel value.

81

Definition 5.27 (Postcondition, upper bound)
PostUpperBound Q holds iff there exists a function f such that ∀ x y, f(x) ≤F f(y)⇒
x ≤F y and for all fuel values c1, c2 and trace values t1, t2 if Q(c1, t1) (c2, t2) then
c1 ≤ f(c2).

We can now state the adequacy property of the logical relation.

Lemma 5.28 (Adequacy †)
Assume that PostUpperBound Q.

Then if ∀ k, Ek(σ1, e1) (σ2, e2) {Q;QG} we have that (e1, σ1) ⊇B (e2, σ2).

Proof The termination case follows easily by the definition of the expression rela-
tions and by the fact that the value relation implies the value refinement ≈. The
nontermination case follows by the divergence preservation lemma of the semantics
(Lemma 3.10). �

In addition both of the relations are compatible with linking.

Lemma 5.29 (Linking compatibility †)
Assume that PostProperties QG Q Q.

If

• ∀ k σ1 σ2, Ek(elib1 , σ1) (elib2 , σ2) {Q;QG}

• ∀ k σ1 σ2, {x} ` Ck(σ1, σ2) {QG} ⇒ Ek(eclient1 , σ1) (eclient2 , σ2) {Q;QG}

Then ∀ k σ1 σ2, Ek(σ1, [x 7→ elib1]eclient1) (σ2, [x 7→ elib2]eclient2) {Q;QG}.

The above statement asserts that if the library programs are related in all possible
environments, and that the client programs are related in all environments that are
related in the value of the external reference x, then linking in the source is related
with linking in the target.

This relational model does not have the necessary vertical compositionality prop-
erties that are required to prove that the end-to-end pipeline inhabits the relation.
In the next chapter I will set up a relational framework built on top of the logical
relation framework that allows us to obtain a top-level relation that is inhabited by
the end-to-end pipeline and is adequate and compatible with linking.

Vertical Compositionality

Despite the fact that that the two relations do not support a general, unrestricted
notion of vertical compositionality, they do support a restricted form of vertical com-
positionality that can be useful in certain proofs. In particular, the symmetrical
logical relation is transitive given that the local and global postconditions satisfy
some requirements.

82

Lemma 5.30 (Transitivity)
Assume that QG ⊇ Q1, QG ⊇ Q2 and Q1 ◦Q2 ⊇ QG.

If

• Ek(σ1, e1) (σ2, e2) {Q1;QG}

• ∀ k, Ek(σ2, e2) (σ3, e3) {Q2;QG}

then Ek(σ1, e1) (σ3, e3) {Q1 ◦Q2;QG}

The above lemma requires that the global postcondition implies each of the local
postconditions and, furthermore, that the composition of the two local postconditions
imply the global postcondition. To understand what these restrictions imply assume
that both local postconditions are the same as the global postconditions, which is the
case for the top-level theorems of the transformations that we will want to compose.
Then for the postcondition it must hold that QG◦QG ⊇ QG. This (semi-idempotency)
requirement holds for simple postconditions like c1 ≤ c2, where c1 is the fuel of the
source and c2 the fuel of the target. But it does not hold for the postconditions
required by transformations that reduce the number of steps a program takes. λANF
transformations such as inlining and shrinking reduce the number of steps that the
program takes, and therefore we cannot use the transitivity lemma to compose λANF
transformations proved correct with E .

We can also compose the closure-conversion relation with the symmetrical rela-
tion, but only if the closure conversion relation comes first. Again we have similar
restrictions on the postconditions.

Lemma 5.31 (Composition of ECC with E)
Assume that QG ⊇ Q1, QG ⊇ Q2 and Q1 ◦Q2 ⊇ QG.

If

• EkCC(σ1, e1) (σ2, e2) {Q1;QG}

• ∀ k, Ek(σ2, e2) (σ3, e3) {Q2;QG}

then EkCC(σ1, e1) (σ3, e3) {Q1 ◦Q2;QG}

We cannot use that lemma since some transformations after closure conversion
reduce the number of steps a program takes.

5.3 Compositional Proof Framework

The compositional relational framework presented in this section is based on the
observation that adequacy and compatibility with linking are closed under relation
composition. That is, if we have two adequate and compatible relations, the composi-
tion of these relations will be an adequate and compatible relation. I set up a relation
that is defined as the composition of the intermediate logical relations that are used

83

to prove correctness of the individual transformations. Then, the whole pipeline can
be easily show to inhabit the composition of these relations, without requiring that
the individual relations support vertical compositionality. The composition of the in-
termediate relations is an adequate and compatible relation, therefore we can obtain
the desired correctness result for the pipeline.

An important aspect of the framework is that linking is supported not only for
programs that are compiled through the same λANF transformation, but also for pro-
grams that are compiled by any λANF pipeline that is proved correct with respect to
the same logical relations. For instance, one can link λANF programs that are compiled
with optional optimizations with programs that are compiled without any optimiza-
tion.10 Or, one could link programs that are compiled with different implementations
of closure conversion, as long as they are proved correct with the same logical relation.

The first ingredient of the compositional framework is the transitive closure of the
symmetrical logical relation, denoted E+. The definition of the relation is shown in
Figure 5.3. Two expressions e1 and e2 are related with E+ if for all environments
σ1 and σ2 that are related in the set of free variables of e1, and the free variables of
e1 are in the domain of σ1, then the configurations (σ1, e1) and (σ2, e2) are related.
The local and global postconditions are existentially quantified and never exposed.
We do however require that they satisfy PostProperties (which is needed to derive
compatibility with linking) and PostUpperBound (which is needed to derive adequacy).

PostProperties QG Q Q PostUpperBound Q
(∀ σ1 σ2 k, fv(e1) ` Ck(σ1, σ2) {QG} ⇒ fv(e1) ∈ dom(σ1) ⇒

Ek(e1, σ1) (e2, σ2) {Q;QG})
E+ e1 e2

Step

E+ e1 e E+ e e2

E+ e1 e2
Trans

Figure 5.3: The E+ relation.

Observe that we require not only that the environments are related in the set
of free variables of the first expression, but also that these variables are bound in
the source environment. This is a necessary precondition of the correctness of some
transformations, namely closure conversion and lambda lifting. If the free variables
are not present in the environment then the source program might get stuck when
the target program does not, or vice versa.

The transitive closure E+ closure is inhabited by the same program (because E is
reflexive) or any program that has gone through one or more transformations proved
correct with E . That practically means that a program that has been (e.g .,) shrink-
reduced and inlined can be linked with a program that has been uncurried. Or, that

10In fact, the only λANF transformation that is non-optional and is required for code generation is
closure conversion and hoisting of function definitions to the top level.

84

a program that has been shrink-reduced, inlined and uncurried, can be linked with
a program that has not gone through any transformation. This is reflected in the
following lemma.

Lemma 5.32 (Linking compatibility of E+)
If

• E+ elib1 elib2

• E+ eclient1 eclient2

Then E+ [x 7→ elib1]eclient1 [x 7→ elib2]eclient2 .

It is worth outlining the proof of the above lemma, as it exposes the technique
by which composition is achieved. The difficulty is that the two uses of the E+

relation in the assumptions might use different number of transitivity steps, and each
of them can use an entirely different postcondition. However, according to Lemma
5.29, compatibility of E requires the two relations that are composed have the same
postconditions. The solution is to horizontally compose each intermediate relation
with an identity transformation, what satisfies any postcondition (Lemma 5.26). This
is reflected in the following two auxiliary lemmas.

Lemma 5.33 (Linking compatibility of E+ (lib))
If E+ elib1 elib2 then E+ [x 7→ elib1]eclient1 [x 7→ elib2]eclient1 .

Lemma 5.34 (Linking compatibility of E+ (client))
If E+ eclient1 eclient2 then E+ [x 7→ elib1]eclient1 [x 7→ elib1]eclient2 .

The two lemmas are proved by induction on the E+ relation. Lemma 5.35 is
a direct corollary of the above two lemmas. That means that whenever the client
programs are related with this relation using m transitivity steps, and the library
programs are related using n transitivity steps, the linked programs will be related
using m+ n transitivity steps. E+ is also adequate (the statement is omitted).

PostProperties QG Q Q PostUpperBound Q
E+ e1 e

′
1

(∀ σ1 σ2 k, fv(e′1) ` Ck(σ1, σ2) {QG} ⇒ fv(e′1) ∈ dom(σ1) ⇒
EkCC(e′1, σ1) (e′2, σ2) {Q;QG})

E+ e′2 e2

E+
CC e1 e2

Compose

Figure 5.4: The E+
CC relation.

Using E+ we can state the relation E+
CC (Figure 5.4) that will be inhabited by the

pipeline. Then E+ is the composition of E+, ECC, and E+. It is inhabited by the closure
conversion transformation, preceded and followed by any number of transformations
proved correct by E . It is therefore inhabited by the λANF pipeline.

As composition of relations that are compatible with linking and adequate, E+
CC is

also compatible with linking and adequate.

85

Lemma 5.35 (Linking compatibility of E+
CC)

If

• E+
CC e

lib
1 elib2

• E+
CC e

client
1 eclient2

Then E+
CC [x 7→ elib1]eclient1 [x 7→ elib2]eclient2 .

Lemma 5.36 (Adequacy of E+
CC)

Assume that PostUpperBound Q.

Then if E+
CC e1 e2 and closed(e1) we have that e1 ⊇B e2.

The above framework allows us to derive correctness of separate compilation with-
out additional proof effort. It suffices to prove that each individual transformation
inhabits the logical relation. We can derive, as an easy corollary, that any pipeline
comprising of transformations proved correct with the logical relations are in the E+

CC

relation. From Lemma 5.35, which is proved once and for all, we obtain that we can
link any programs compiled pipelines that satisfy E+

CC.

Cross-language setting. The above framework generalizes to a cross-language
setting with more than one IR. Conceptually, the closure-conversion logical relation
behaves as a cross-language asymmetrical logical relation. If more than one IR were
used then we would have to compose all cross-language relations, in the same sequence
that are used in the compiler, perhaps adding an intermediate symmetrical relation
for the IRs where same-language transformations happen.

3ex
This concludes the definition of the relational proof framework that we use to

prove correct the λANF transformations. In the next chapter, I present the theorem for
each transformation and the top-level theorem of the λANF pipeline. In the rest of this
chapter, I present related work on relational reasoning and compositional compiler
correctness.

5.4 Related Work

In this section, I survey proof techniques that are used in other verified compilers
for functional languages as well as related work in compositional compiler correctness
and relational reasoning about programs.

5.4.1 Other Verified Compilers for Functional Languages

CakeML is proved correct with a combination of syntactic simulations and logical
relations [106, 129]. The CakeML compiler does not provide a separate compilation
theorem. However, older versions of the compiler [80] were running in a REPL (read-
eval-print loop) that requires the same style of reasoning as linking with programs

86

that are compiled with the same compiler. Therefore, it is likely that a separate
compilation theorem for programs compiled with exactly the same CakeML com-
piler could be obtained. Additional effort would be required to port the CakeML’s
correctness theorem to stronger notions of compositional compiler correctness.

CakeML’s ClosLang optimizations [106] are verified using a logical relation. In
order to show divergence preservation, the logical relation forces the step index to
be the same for both programs. This enables showing that if the source program
diverges so does the second program, but it forces the two programs to use the same
amount of fuel. To enable verification of transformations that reduce the amount of
steps that a program takes, the language has a special instruction, Tick, that has
no observable effect but only decrements the fuel value. Programs that increase the
amount of steps cannot be shown related in this model. This would be detrimental
for the λANF pipeline since a lot of transformations introduce administrative redexes
that are removed by subsequent transformations. Furthermore, and additional Tick-
erasure pass must be proved correct before the final code generation phase. CertiCoq’s
proof framework overcomes these issues by allowing the steps of the two programs
to be related by an arbitrary relation, the postcondition, and formally characterizing
the postconditions that allow to derive divergence preservation. With this model we
can relate programs that both reduce and increase the amount of steps, without the
need for a Tick instruction.

Œuf [102] is proved correct using syntactic simulations. Unlike CertiCoq, Œuf’s
reification phase (which is currently unverrified) is proved correct using denotational
semantics: the denotation of the reified term is equivalent of the original Gallina
program.

Lambda Tamer [34] is proved correct using syntactic simulations. The novelty of
the compiler lies in that the intermediate representations are formalized parametric
higher-order abstract syntax (PHOAS). The correctness theorem of the compiler does
not support separate compilation.

5.4.2 Compositional Compiler Correctness

SepCompCert. In terms of the strength of the linking theorem, SepCompCert [73]
is the most closely related work. SepCompCert supports verified linking of programs
that are compiled through CompCert using different sets of optional optimizations.
SepCompCert achieves that by forcing transformations to be in lockstep in each
of the linked pipelines, by padding the pipeline that does not perform an optional
optimization with the identity transformation. The correctness statement of each
optional optimization must be modified such that either the initial simulation holds
between the source and target or the target is the same as the source. Therefore the
new statement is satisfied by both the optional and the identity transformation. Then
the simulations that are used to verify each pipeline are in lockstep and linking can

87

be proved correct in the same way that linking programs compiled through exactly
the same pipeline can be proved correct.

The framework presented in this chapter follows a similar idea as SepCompCert:
to show Lemma 5.35 we essentially pad with the identity transformation by using
the reflexivity property of the logical relation. However, the CertiCoq framework is
stronger than SepCompCert in that provides a compositional compiler correctness
theorem; SepCompCert’s theorem is formed in terms of whole-program correctness.
That has a few implications. First, the CertiCoq framework requires zero modification
of correctness statements and their proofs. Second, in SepCompCert whenever a new
optional transformation is added or some transformations are reordered, a new linking
theorem must be proved (or at the very least the proof of the old linking theorem must
modified), so that there is a theorem that covers each possible linking combination.
In our case, the only thing that we need to do is to show that each pipeline we
want to link with inhabits the E+

CC relation. Then the linking theorem follows as an
direct corollary. Lastly, the linking theorem of SepCompCert can be applied only
for optional transformations that can be replaced with the identity transformation.
This is not true for closure conversion. With our framework we can link two programs
compiled with different closure conversion transformations granted that they are both
in the ECC relation.11 That would not have been possible with the SepCompCert proof
technique.

CompCompCert. Compositional CompCert [127] supports a general notion of
linking that allows the source program to be linked with programs that are written
in any of the CompCert languages. This is achieved using interaction semantics
that defines a protocol that can model cross-language function calls. Interaction
semantics require that the languages involved have the same memory model and
value representation, and therefore it is not directly applicable to functional languages
where closure conversion necessarily changes the value representation of functions.

CompCertM [122] introduces the RUSC (Refinement Under Self-related Contexts)
relation, a lightweight proof technique for compositional compiler correctness. It sup-
ports a quite general notion of compositional compiler correctness, similar in strength
with CompCompCert. Given a set of adequate and compatible relations, two pro-
grams are related under RUSC if the target program refines the behavior of the source
under any context that is self-related by all the relations in the given set. The RUSC
relation is adequate and has both vertical and horizontal compositionality. To link
the output of two compilers proved correct with a set of adequate and horizontally
composable relations it suffices to form a RUSC with the set of relations that are used
to prove the compilers correct. Then correctness of linking follows by the fact that
the two compilers are in RUSC and that RUSC can be composed horizontally. As in
the case of interaction semantics, RUSC can only be applied to languages that share

11and our ECC relation is quite general: it would permit, for example, sophisticated closure repre-
sentations such as Shao and Appel’s safe-for-space hybrid flat/linked closures [120].

88

the same notion of values and memory models, and therefore it is not clear how it
could be applied to functional languages.

Parametric bisimulations and inter-language simulations. Hur et al . [65] de-
velop parametric bisimulations (PBs) that combine aspects of Kripke logical relations
and bisimulations to obtain a relational framework that can be transitively composed.
The model avoids the use of step-indexing (which hinders transitivity in logical re-
lations) by using a coinductively defined relation. A crucial technical novelty of the
construction is the notions of local and global knowledge. Local knowledge captures
the terms that are currently shown to be equivalent, while global knowledge captures
all other terms that are known to be equivalent. In this relational model, two func-
tions are related if they map arguments related by global knowledge to results that
are related by local knowledge. This allows functions to be linked not only with code
that satisfies the local knowledge, but rather the more general notion of global knowl-
edge that captures, e.g ., programs compiled with a different proved-correct compiler.
Crucially, the relation is parametric on the notion of global knowledge that can be
instantiated with various relations.

Building on top of PBs, Neis et al . [104] develop parametric inter-language simula-
tions (PILS) and use them in a inter-language setting to verify the Pilsner multi-pass
compiler from an ML-like source language to assembly, and also Zwickel, a simple
one-pass compiler between the same languages. The proof technique allows them
to derive that programs compiled with Pilsner can be linked with other programs
compiled with Pilsner, with programs compiled with Zwickel, and also with hand-
written assembly that refines some source-level code. RTS and PILS do not admit
the eta-conversion rule that is crucial for functional-language compilers (for example,
CertiCoq’s uncurrying transformation is based on eta-expansion). A solution has been
suggested [77], but has not been incorporated into PILS. Compared to CertiCoq’s log-
ical relations, PILS support a stronger notion of compositional compiler correctness,
they are, however, more technically involved. According to the authors [104, Sec-
tion 4], the metatheory of RTS (including the transitivity proof) and PILS is quite
complex and requires a lot of effort. A PILS-based relation could, in principle, be
used to verify CertiCoq, if the solution that makes eta-conversion admissible were
incorporated into the model.12

Multi-language Semantics. Perconti and Ahmed [109] use the notion of multi-
language semantics[91] in order to support source-independent linking that poses no
restriction on the programs that are linked. They define a two-pass compiler from
a high-level typed language to a low-level language, that uses some intermediate
language. They then define a language where the source, intermediate, and target
languages can be embedded and can be used to model interoperability between them.
This framework allows linking source programs with arbitrary target code that has
the right (source) type. The multi-language nature of the language allows to prove

12The solution [77] is to allow stuttering steps by using some notion of fuel that specifies how
many stuttering steps a program may take between two actual steps.

89

contextual equivalence between programs defined in different languages. In partic-
ular, the linking theorem asserts that linking a source program with an embedded
target program with the right type is contextually equivalent with linking the com-
piled source program with the target program. Contextual equivalences are proved
using logical relations. This technique scales beyond separate compilation and al-
lows to model foreign-function interfaces, which is outside the scope of the framework
presented in this chapter.

5.4.3 Relational Reasoning for Program Resources

Relational cost analysis [35, 30, 29, 113] is concerned with devising ways that
to relate the execution cost of two programs by means of static analysis. Type sys-
tems for relational cost analysis are used to derive precise bounds on the difference
of the execution cost of the two programs. Typechecking [31] can be used to mech-
anize these proofs. The framework of this thesis also allows to establish bounds on
the resource consumption of two programs (together with relatedness of the results).
Whereas relational cost analysis is targeted at source level verification of relational re-
source bounds, the framework of this chapter is targeted at showing that the resource
consumption of programs, as defined by the semantics of the language, is preserved
by program transformations.

The soundness of relational type systems for cost analysis is often demonstrated
using a binary logical relation (indexed by types) that asserts that the bound obtained
by means of typing indeed holds for the execution time of the two programs. For
example the logical relation by Çiçek et al . [29] is parameterized by a bound that
it is enforced on the difference of the execution times of this program. The logical
relations presented in this chapter, albeit not indexed by types, both take inspiration
from, and generalize the logical relations in [35, 30, 29]. The machinery presented in
this thesis to track runtime and resource information and capture their relationship
could be likely reused in the context of relational resource analysis to show soundness
of relational resource analysis methods.

5.5 Conclusion

In this chapter, I presented the relational framework that is used in the verification of
the λANF pipeline. The framework is based on step-indexed logical relations and makes
a few novel technical contributions that tackle compositional compiler correctness and
divergence preservation. First, the logical relation is parameterized by a novel notion
of relational postcondition that is used to relate the abstract resource consumption of
the two programs. The resource consumption is captured by semantics of the program
using abstract trace and fuel monoids that can be instantiate in different ways. This
machinery allows us to derive divergence preservation for programs that are related
by the logical relation at certain postconditions that satisfy some property. Second,
I show how such logical relation proofs can be composed to derive a compositional
compiler correctness theorem, providing a novel, lightweight solution to a challenging

90

problem. This compositional compiler correctness theorem can be applied to pro-
grams that are separately compiled with compilers that go through the same series
of intermediate languages.

It would be interesting to examine whether this restriction can be lifted by so that
the framework can be used to prove correct compilers that need not have the same
internal intermediate representations. If possible, this would most likely require pro-
viding back translations between adjacent intermediate representations and proving
them correct.

Another useful extension would be to define the logical relation in a language-
generic way so that the same relation can be used to verify other parts of CertiCoq,
extending the end-to-end formal guarantees. Language-generic logical relations exists
in the literature [64] and perhaps the same ideas could be used for the logical relations
presented in this chapter.

91

Chapter 6

Correctness of Transformations

In this chapter, I apply the relational proof framework of the previous chapter to
show that λANF transformation are correct. I also give an account of the mechanized
proof development showing the top-level theorems as they are stated and proved in
Coq.

6.1 Correctness of λANF transformations

In this section I give a mostly high-level account the individual proofs for the λANF
transformations. For the correctness of each transformation we assume that the
program is well scoped. Therefore we also need to show that each transformation
preserves well-scopedness.

The proofs of many transformations in the λANF pipeline are structured in layers.
First, a relational specification is proved to inhabit the logical relation. Then a second
theorem is proved that the implementation of the transformation satisfies its relational
specification. This allows us to separate the details of semantics preservation proof
from the details of implementation.

The individual top-level theorems have generally the same shape (with the excep-
tion of shrinking, which is discussed later in this section). In particular we show the
following statement.

∀ e e′, Trans e e′ ⇒
well scoped(e)⇒
well scoped(e′) ∧
(∀ σ1 σ2 k, fv(e) ` Ck(σ1, σ2) {QG} ⇒

fv(e) ∈ dom(σ1) ⇒
Ek(e, σ1) (e′, σ2) {Q;QG})

Trans e e′ denotes that e′ is the translation of e. The relations ECC and CCC are
used in the case of closure conversion. The precondition fv(e) ∈ dom(σ1) is needed
only in the case of lambda lifting and closure conversion. In both transformations the
translated program will use free variables before their first use in the source program,
either to construct a closure environment or to pass as parameters. If these variables

92

where not in the domain of the source environment, then target program would get
stuck before the source did, invalidating the correctness theorem.

The main difference between the correctness theorems of each transformation is the
postcondition, which is generally different for each transformation. In the remainder
of this section I will refer to the particular details of the correctness theorems of each
transformation including the postconditions that are proved.

Concrete fuel and trace monoids Recall from section 3.3.2 that the concrete
monoid we are using for fuel is 〈N,+, 0〉 with 〈e〉 def

= 1. For the trace monoid we are
using 〈N× N,+, (0, 0)〉 with generator:

〈let x = C(y) in e〉 def= (1, 0) 〈let x = y.i in e〉 def= (1, 0)

〈case y of [Ci → ei]i∈I〉
def
= (1, 0) 〈fun f x = e1 in e2〉

def
= (1, 0)

〈let x = f y in e〉 def= (0, 1) 〈f y〉 def= (0, 1)

〈ret(x)〉 def= (1, 0)

.
Intuitively, the fuel monoid counts a unit of time for each execution step. The

trace monoid keeps a separate count of the nonapplication steps (first component of
the pair) and the application steps (second component of the pair)

6.1.1 Inlining

In the proof of inlining follows from the compatibility lemmas for each case except of
the application cases. For the application cases we need to prove two logical relation
lemmas for function inlining. As usual, first we need to state the assumptions that
we will impose on the postcondition.

For the tail-call case, we need to be able to derive that the postcondition holds
if an application is evaluated only by the source program. In this case the target
program does not perform the application step, since the application was statically
evaluated.

Definition 6.1 (Postcondition (tail-call inlining))
PostAppInline Q1 Q2 holds iff whenever

Q1(c1, t1) (c2, t2)

we also have

Q2(c1〈+〉F〈f1 x1〉F , t1〈+〉T 〈f1 x1〉F) (c2, t2)

The let-bound application case is more involved. Because of the extra renormal-
ization steps that are required to inline let-bound function in ANF (Section 4.3), the
target program can omit one or two steps for each inlined application. As in the
tail-call inlining case, the target will not perform the step that applies the function.

93

Additionally, if the body of the inlined function ends with return, then this instruction
will be omitted after inlining (recall the definition of inlining in Figure 4.2).

For let-bound application lemma, we also need to distinguish two cases: one for
when the function call terminates and one for when the function call runs out of time.
The compatibility rules for the postconditions are shown below.

Definition 6.2 (Postcondition (let-bound call inlining))
PostLetAppInline Q1 Q2 Q3 holds iff whenever

• Q1(c1, t1) (c2, t2) or Q1(c1, t1) (c2〈+〉〈ret(y)〉, t2〈+〉〈ret(y)〉), and

• Q2(c
′
1, t
′
1) (c′2, t

′
2)

we also have
Q3(c1〈+〉〈e1〉〈+〉c′1, t1〈+〉〈e1〉〈+〉t′1) (c2〈+〉〈e2〉〈+〉c′2, t2〈+〉〈e2〉〈+〉t′2).

Definition 6.3 (Postcondition (let-bound call inlining OOT))
PostLetAppInlineOOT Q1 Q2 holds iff whenever

Q1(c1, t1) (c2, t2) or Q1(c1, t1) (c2〈+〉〈ret(y)〉, t2〈+〉〈ret(y)〉)

we also have

Q2(c1〈+〉〈e1〉, t1〈+〉〈e1〉) (c2〈+〉〈e2〉, t2〈+〉〈e2〉).

In the above rules, the postcondition Q1 is the postcondition that holds for the
function body before and after translation. We distinguish two cases for Q1: one
where the fuel of the target program is c2 and one where the fuel of the target is
c2〈+〉〈ret(y)〉. The former covers the case when the function body ends with a tail
call, and therefore the fuel of the function body is the same before and after inlining.
The latter covers the case when the function body ends with return, that will be
removed during inlining, and therefore the function body before inlining will perform
one extra step (captured by 〈ret(y)〉).

Using the above, we can now state the lemmas required for inlining. For tail calls,
we have the following lemma.

Lemma 6.4 (Inlining (tail-cal))
Assume that PostZero Q2 and PostAppInline Q1 Q2.

If

• ∀ (m < k) g y e1 v,
σ1(f) = fun g y = e1 ⇒ σ1(x) = v ⇒
Em(e1, σ1[y 7→ v]) (e2, σ2) {Q1;QG}

Then Ek(f1 x1, σ1) (e2, σ2) {Q2;QG}.

Similarly for inlining of let-bound applications we prove the following lemma.

94

Lemma 6.5 (Inlining (let-bound cal))
Assume that PostZero Q2, PostLetAppInline Q1 Q2 Q3

and PostLetAppInlineOOT Q1 Q3.

If

• ∀ (m < k) g y e1 v, σ1(f) = fun g y = e1 ⇒ σ1(x) = v ⇒
Em(e′1, σ1[y 7→ v]) (e′2, σ2) {Q1;QG}

• inline letapp(e′2, x) = Some(E , x′)

• ∀ σ1 σ2, fv(e1) ` Ck(σ1, σ2) {Q} ⇒
Ek(e1, σ1[y 7→ v]) (e2{x′/x}, σ2) {Q2;QG}

Then Ek(let x1 = f1 x1 in e1, σ1) (E [e2], σ2) {Q3;QG}.

Let us now look at the postcondition that needs to be established for inlining. We
need to find an upper bound for the execution steps of the source in terms of the steps
of the target, but the difficulty is that the steps of the target are fewer than the steps
of the source by at most two steps for each application that is executed in the source
and not the target. Let G be the total number of inlining steps during translation,
and L the number of remaining inlining steps at the current program point. To find
an upper bound, consider that for each function body that is evaluated in the target
there might be at most G inlining steps that have happened inside this function
body, and therefore 2 ∗ G extra steps in the source (G for the number of removed
calls, and G for the number of removed returns). In addition we shall account for
2 ∗ L steps for the function body that is currently being translated. Therefore, we
want to establish the relation c1 ≤ c2 + 2 ∗G ∗ c2 + 2 ∗L for the execution steps of the
two program. Unfortunately, this upper bound is too coarse grained and we cannot
show that it satisfies the postcondition requirements for let-bound application. We
prove the following more fine-grained bound using the number of total application
steps that happen in the source program, which is tracked by the trace.

PostInline G L (c1, (t1, t
app
1)) (c2, (t2, t

app
2))

def
= c1 ≤ 2 + 2 ∗G ∗ tapp1 + 2 ∗ L ∧

tapp1 <= tapp2 + 2 ∗G ∗ tapp2 + L ∧
t2 + tapp1 = c2.

This bound satisfies all the required rules and implies the simpler bound that
suffices to show divergence preservation. Being able to state this more precise upper
bound is the reason why tracing of application steps is required.

6.1.2 Shrinking

The shrinking transformation is proved correct with respect to a rewrite system [22].
Shrink-reduction steps are modeled as a system of local rewrites that are shown to
inhabit the logical relation. The postcondition is the same as in the inlining case, but

95

this time G is 1 (since we are considering only one rewrite step each time) and L is 1
before the rewrite step and 0 after the rewrite step. The Lemma 6.4 and 6.5 are also
used in the shrinking proof along with similar lemmas for the other shrink-reduction
steps.

The shrinking program is shown to be in the transitive, congruent closure of
the shrink-rewrite system. Savary Bélanger and Appel [22], do not show divergence
preservation for shrinking. That permits them to use a relational model that does not
require a postcondition and, as a result, it satisfies the transitivity property (Lemma
5.30). Therefore, we can show that the shrink-reduction program is in E (with a trivial
postcondition). But when we prove divergence preservation, we use a postcondition
that does not satisfy the requirements for transitivity, therefore we can no longer
prove that the shrinking transformation is in E . Instead, we show that the shrinking
program is in the E+ relation.

6.1.3 Uncurrying

The proof of uncurrying is also layered: we show that performing an uncurry rewrite
step is in the logical relation and that the uncurrying transformation is in the transi-
tive, congruent closure of the rewrite step. For uncurrying however, the upper bound
that is proved is the following.

SimplePost (c1, (t1, t
app
1)) (c2, (t2, t

app
2))

def
= c1 ≤ c2

The SimplePost upper bound satisfies the requirements for transitivity and there-
fore uncurrying can be shown to inhabit E .

6.1.4 Closure Conversion, Hoisting, and Lambda Lifting

The proofs of closure conversion, hoisting, and lambda lifting are similar in style.
First, a relational specification of the transformation is proved to inhabit the logical
relation, and then the transformation is proved to inhabit the relational specification.
For closure conversion and lambda lifting the SimplePost postcondition is used. For
hoisting, which reduces the number of steps, a different bound is used. Hoisting will
remove nested function definitions (each in incurring unary execution cost) and will
move them to the top-level in the same bundle of (potentially) mutually recursive
functions (also incurring unary cost). Let again G be the number of total number
of hoisted function definitions and L the number of remaining number of hoisted
function definitions in the current expression. The following bound is proved for the
hoisting transformation.

HoistingBound G L (c1, (t1, t
app
1)) (c2, (t2, t

app
2))

def
= c1 ≤ c2 + 2 ∗G ∗ c2 + L

96

6.2 Top-level Theorem for λANF

Using the correctness proofs of individual transformations we can show that the λANF
pipeline is in the E+

CC relation. Let compile be the λANF compilation function. It receives
two arguments: opt, which determines which optimizations will be performed, and
the source program e. Technically, all optimizations other than closure conversion
and hoisting can be disabled. We obtain the following theorem.

Theorem 6.6 (Top-level Theorem for λANF)

∀ opt e e′, compile opt e = e′ ⇒
well scoped(e)⇒
well scoped(e′) ∧ E+

CC e e
′.

Now assume that we use compile to compile the well-scoped programs elib and
eclient with different sets of optimizations opt1 and opt2. From the above theorem and
Lemma 5.35 (compatibility with linking) we can derive the following statement about
linking the two programs.

E+
CC ([x 7→ elib]eclient) ([x 7→ compile opt1 elib](compile opt2 eclient))

Therefore from Lemma 5.36 (adequacy), we obtain that linking the two target pro-
grams refines the behavior of linking the two source programs, regardless of what
optimizations were used to compile them.

([x 7→ elib]eclient) ⊇B ([x 7→ compile opt1 elib](compile opt2 eclient))

6.3 Coq Proof Development

The definitions and proofs of the previous chapter are all mechanized in the Coq
proof assistant. In this section, I give the Coq statements of the most important
top-level theorems. At the time when this thesis is submitted, the dead parameter
elimination transformation is not yet proved correct. The top-level theorem disables
this transformation in the pipeline.

The proofs of the λANF pipeline are constructive and do not assume any classical
logic axioms.

6.3.1 Specification

The actual λANF transformations are partial functions; programs that may fail on cer-
tain inputs. λANF transformations take as input a source term and a compilation state
and return a either a target term or an error message and a new compilation state.
Since most of the transformations need to generate fresh binders, the compilation state
provides a pool for fresh variable names that is threaded through the program. λANF
transformations are of type anf_trans = exp -> comp_data -> error exp * comp_data,

97

where exp is the type of λANF terms and comp_data the type of the compilation state.
The type error is a sum type with two variants:

Inductive error (A : Type) : Type :=
Err : string -> error A | Ret : A -> error A

A transformation might return a result (Ret e’) or it may fail returning, an error
message (Err s). In both cases, the transformation returns a new compilation state
(the compilation state tracks debugging information that can be useful when a trans-
formation fails).

The top-level correctness specification for transformations states that if the input
is a well-scoped term and the next available variable is fresh (i.e., larger than all the
variables—free or bound—in the source program)1 the transformation is returns a
non-error result, the target term is also well-scoped, the new next available variable
is fresh in the with respect to the target term, and the source and target term are in
the E+ relation (or in the E+

CC relation in the case of closure conversion).
The following Coq definition captures correctness of “identity” transformations

(i.e., transformations that are optional and can be replaced with the identity trans-
formation).

Definition correct (trans : anf_trans) :=
∀ e c,

well_scoped e ->
max_var e 1 < next_var c ->
∃ (e’ : exp) (c’ : state.comp_data),

trans e c = (Ret e’, c’) ∧
well_scoped e’ ∧
max_var e’ 1 < state.next_var c’ ∧
preord_exp_n e e’.

In the above, trans is the transformation, next_var c is the next fresh variable of
the compilation state c, max_var e is the maximum variable in c, and preord_exp_n

is the E+ relation.
We can prove that if two transformations satisfy correct, so does their sequential

composition.

Lemma correct_compose (t1 t2 : anf_trans) :
correct t1 ->
correct t2 ->
correct (fun e => e <- t1 e;; t2 e).

In the above x <- m ;; p is notation for the monadic bind bind m (fun x => p) for
the monadic type constructor fun A => comp_data -> error A * comp_data.

Similarly, we define correct_cc to capture the correctness of the closure conver-
sion transformation, and any pipeline that includes closure conversion.

1Variables are represented as positive numbers. Fresh variables are generated by keeping track
of the next available variable and increasing its value by one whenever a new name is needed.

98

Definition correct_cc (trans : anf_trans) :=
∀ e c,

well_scoped e ->
max_var e 1 < next_var c ->
∃ (e’ : exp) (c’ : state.comp_data),

trans e c = (Ret e’, c’) ∧
well_scoped e’ ∧
max_var e’ 1 < next_var c’ ∧
R_cc_exp e e’.

This definition is similar to correct but it uses the relation R_cc_exp which is
the E+

CC relation. We can prove lemmas about the sequential composition of transfor-
mations that satisfy correct and correct_cc. These are stated below.

Lemma correct_cc_compose_l (t1 t2 : anf_trans) :
correct cenv t1 ->
correct_cc cenv clo_tag t2 ->
correct_cc cenv clo_tag (fun e => e <- t1 e;; t2 e).

Lemma correct_cc_compose_r (t1 t2 : anf_trans) :
correct_cc cenv clo_tag t1 ->
correct cenv t2 ->
correct_cc cenv clo_tag (fun e => e <- t1 e;; t2 e).

6.3.2 Top-level Theorem

For each transformation we prove that it is either correct or correct_cc. The top-
level theorems for the pipeline is obtained by composing these proofs with the lemmas
presented above. The following theorem is proved for the λANF pipeline.

Theorem anf_pipeline_correct opts :
dead_param_elim opts = false ->
correct_cc cenv clo_tag (anf_pipeline opts).

The pipeline (anf_pipeline) takes as input a parameter (opts) that determines
which transformations are enabled. In the theorem we require that the dead param-
eter elimination transformation is disabled because it is not yet proved correct.

6.3.3 Proof Artifact

The sources of the CertiCoq compiler can be assessed online at https://

github.com/PrincetonUniversity/certicoq. At the time when this thesis is
written2 the toplevel theorems presented in this section are defined in the file
https://github.com/PrincetonUniversity/certicoq/blob/master/theories/
L6 PCPS/toplevel theorems.v. In the same directory, there are also the definition of
the λANF language, the semantics, the logical relation framework, the implementation
the λANF transformations and the corresponding proofs.

2Which corresponds to commit hash d8afa96 in the code repository.

99

https://github.com/PrincetonUniversity/certicoq
https://github.com/PrincetonUniversity/certicoq
https://github.com/PrincetonUniversity/certicoq/blob/master/theories/L6_PCPS/toplevel_theorems.v
https://github.com/PrincetonUniversity/certicoq/blob/master/theories/L6_PCPS/toplevel_theorems.v

Chapter 7

Space Safety

In this chapter I consider an extension of the proof framework that I described in
the previous chapter. The extension makes use of the postcondition machinery of the
logical relation to establish upper bounds on the running time and space of programs.
To that end I give a new semantics to the intermediate language that formalizes the
memory model of the language. I use this framework to show that the closure con-
version transformation is both functionally correct and safe for time and space. I also
show that the garbage collection strategy of CertiCoq is safe for space. The formal-
ization presented in this chapter is only about the CPS subset (henceforth λCPS) of
the λANF intermediate representation that I have used in the previous chapters. The
reason for this is chronological as this framework was developed before the interme-
diate representation was extended to ANF. Although the formalization has not been
ported to ANF, at the end of this chapter I outline how this could be done.

7.1 Introduction

Formally verified compilers [85, 80, 104] guarantee that the compiled executable be-
haves according to the specification of the source language. Most of the times this
specification is limited to the result of the computation, as the correctness statement
only specifies the extensional behavior of the program. But programmers also expect
compilers to preserve programs’ intensional properties, such as resource consumption,
and failure to do so may result in performance and security leaks. At the same time,
static cost analysis frameworks enable programmers to formally reason about the
running time [70, 62, 137] and memory usage [132, 6, 62] of programs. But a com-
piler that fails to preserve resource consumption renders source-level cost analysis
useless. There are few examples in the literature of program transformations certi-
fied with respect to resource consumption [40, 100], and most are limited to running
time. In this chapter, I develop a general proof framework, based on logical relations,
that supports reasoning about preservation of resource consumption. Inspired by
a well-known example of space-safety failure—the (once widely used) linked closure
conversion algorithm—I apply this framework to show that flat closure conversion is
safe with respect to both time and space.

100

Closure conversion is used to implement static scoping in languages with nested
functions: a program with nested lambdas that may reference variables nonlocal to
their definition is transformed to a flat-scope program in which lambdas do not have
free variables, and are packaged together with their environment, that contains the
values of their free variables, to form a closure. Designers of optimizing compilers try
to optimize the closure data structures for creation time, access depth of variables, and
space usage, and a standard optimization technique is to share parts of the closure
environment across multiple closures. If a closure, however, contains variables of
different future lifetimes (some of which may be pointers to large data structures) then
the garbage collector cannot reclaim the data until the entire closure-pair is no longer
accessible; this can increase the program’s memory use by an amount not bounded
by any constant factor [10]. Closure conversion that does not increase the space
(respectively, time) usage of a garbage-collected program (by more than a constant
factor per program) is called safe for space (respectively, safe for time). In fact, shared
environment representations that may leak space are still employed: the JavaScript V8
engine’s environment sharing strategy, based on linked environment representations,
is not safe for space [46]. Standard flat closures are safe for space, but not necessarily
optimal for creation time. More efficient safe-for-space closure conversion algorithms
exist [121, 120], but no one has attempted to formally reason about space safety of
closure conversion.

The difficulty is, to reason formally about space consumption in garbage-collected
programs, it is not enough to account for the allocated heap cells during execution.
One must explicitly reason about the number of cells simultaneously live in the heap at
any point during the execution of the source program, and show that this is preserved
for the transformed program. Minamide [100] employs this technique to prove space
preservation of the CPS transformation. Using a simulation argument, he shows that
the maximum size of the reachable heap, i.e., the ideal amount of space required for
a program’s execution, is preserved by the transformation. In closure conversion this
is more challenging as it changes the shape of a program’s heap data structures and
lifetime much more than CPS conversion. Furthermore, we are also aiming at not just
showing that the ideal space usage is preserved, but to connect the idealized space
usage model (assumed by the source cost model) with a model closer to the actual
implementation, by accounting for the size of the whole heap (not just the reachable
part) and explicitly modeling calls to the garbage collector.

The proof uses a standard technique in proving semantics preservation: logical
relations. The main technical novelty is that the logical relation imposes pre- and
postconditions on the related programs. I use them to establish the (time and space)
resource bounds simultaneously with functional correctness, by showing that the input
and output programs of the transformation inhabit the logical relation. I show how to
overcome several technical difficulties associated with logical relations. The presence
of garbage collection complicates Kripke monotonicity, which states that whenever
two values are related, they remain related for future states of a program’s execution.
Invoking a garbage collector causes heaps to not only grow during execution, but also
shrink and become renamed (in the case of copying garbage collectors). I overcome
this by explicitly quantifying over all future heaps in our logical relation definitions (as

101

is common in Kripke logical relations) for the right notion of “future”. I also explain
why pre- and postcondition monotonicity (which in Hoare logic enables compositional
reasoning with the use of weakening, strengthening, and frame rules) does not hold
directly for our logical relations, and how it is possible to restore it. Finally, I show
how the logical relation can be used to prove that divergence and space consumption
of diverging programs is preserved (a program can run indefinitely in a bounded
memory).

This is the first proof that a closure conversion transformation is safe for space.
As in the previous chapters, the result is fully mechanized in the Coq proof assistant.
The rest of the chapter is structured as follows. In Section 7.2 I give an overview of
closure conversion and different closure environment representations, explaining why
linked environments fail to preserve asymptotic complexity. In Sections 7.5 and 7.6
I give the formal definition of the language, its semantics, and the closure-conversion
transformation. In Section 7.7, I describe the logical relation framework and in Sec-
tion 7.8 I apply it to prove correctness of the closure conversion transformation. I
conclude with related and future work (Sections 7.9 and 7.10).

7.2 Closure Representation

In functional languages like ML, nested functions can access variables that are non-
local to their definition but are formal parameters or local definitions of an enclosing
function. To implement accesses to nonlocal variables, compilers commonly employ a
closure-conversion transformation [14, 75], in which the environment of each function,
represented as a record, is passed as an extra parameter and free-variable accesses are
compiled to accesses to the environment parameter. Function values are represented
as closures, i.e. pairs of a code pointer and the environment. At application time the
code and the environment components are projected out of the pair and the latter is
passed as an argument to the former.

The representation of closure environments is crucial to the design of a closure
conversion algorithm. Several closure representations have been proposed, each of
them trying to optimize metrics such as space consumption, number of accesses to
the environment, and closure creation time [121, 120, 74]. However, the choice of
representation may affect the space-safety of a program.

7.2.1 Flat Closure Representation

In the flat representation of closures (Figure 7.1b), the environment of each function
is a record that contains exactly the values of the function’s free variables.

Execution time. The time overhead of flat closure conversion consists of the time
needed to allocate the closure environment and pair after each function definition,
which is proportional to some constant amount plus the size of the function’s envi-
ronment, and the time needed for fetching free-variable values from the environment,
which in flat environments is always constant. Since the size of the environment is

102

fun f x y u w =
fun g () =
fun h n =
fun k m =
x + y + n + m

in k u + n

in h w

in g

(a) Program with nested scopes.

gcode x y u w

hcode x y u

kcode x y n

(b) Flat environments.

gcode x y u w

hcode

kcode n

(c) Linked environments.

Figure 7.1: Flat and linked closure representations. Linked closures appear to save
space; for example, the flat closure environment for h is three words (x, y, u) but the
linked representation is just one word. But linked closures are not safe for space;
suppose k is live but g is not, then with flat closures w is garbage-collectible but with
linked closures w is still reachable. If w is the root of a large data structure, this is
significant.

equal to the number of free variables in the function’s body, the total time overhead
is, in the worst case, proportional to the execution time of the source by a factor that
depends linearly on the size of the source program.

In the above analysis, we implicitly assume that, in the source cost model, function
definitions incur constant cost. As we will see in Section 7.5, in our source cost model,
function definitions incur time proportional to the number of their free variables. This
decision allows us to establish a more precise bound on the running time of the target.

Execution space. To reason about the space overhead, we must think about the
amount of space that is live simultaneously in the heap of the closure-converted
program. Constructed values (lists, closure records, closure environments) occupy
space as long as they are live, that is, as long as there is some chain of pointers
(through such records) that reaches them, starting from a statically live variable of
a currently active function. In CPS, of course, there is only one currently active
function (in direct-style programs there is a stack of active functions). What is a
statically live variable? The execution state of a function is modeled by an expression
and an environment. At the beginning of function execution, the expression is the
entire function body, and the environment is a finite map whose domain is the set
of free variables of that function. As execution proceeds through the function, the
current expression is some subexpression of the function body, and the environment
may have been augmented by new local bindings. The statically live variables are the
free variables of the current expression.1

1In traditional compiler terminology, statically live variables are those whose next use is before
their next definition, along some path of control flow—and assuming that branches may go either
way. This coincides with the notion of free variable in our CPS expressions.

103

Before closure conversion, our space consumption model measures exactly the
amount of space that is live during the execution of the program. After closure
conversion, the truly live space is approximated by calling the garbage collector upon
each function entry and measuring the size of the actual heap. During the execution
of a CPS function, the set of live records may increase (as new records are allocated
by, e.g., constructor application) or decrease (as local variables live in expression e
become dead in a subexpression of e). But since our CPS functions contain no internal
loops—each function is a tree of control flow, of bounded height, terminating in tail
calls at the leaves—the approximation error can be (at most) an additive amount
proportional to the maximum path length in the execution-tree of the function.

I will, of course, formalize this argument in the remainder of this chapter.

7.2.2 Linked Closure Representation

In the flat environments in Figure 7.1b, free variables x, y and z appear multiple
times. This increases both the time and the space that the program consumes: when
creating environments for nested functions the values of their free variables must
be copied from the environment of the immediately enclosing function to the newly
constructed environment and, in addition, these environments can be live in the heap
simultaneously, holding multiple copies of the same value.

The linked closure representation attempts to avoid this by introducing pointers
from the environments of nested functions to the environments of the immediately
enclosing functions. When function k is nested within function h, the linked closure
for k contains (locally) only the variables free in k but not in h, and points to h’s
environment for the remaining free variables of k.

Although this representation might save time and space through sharing of free
variables across function environments, it is not safe for space. In particular, any
closure at some nesting depth can access the closure environments of the all the
enclosing functions. This extends lifetime of variables across function calls, and can
introduce memory leaks.

Figure 7.2 shows an example adapted from Appel [10]. The function double n
creates a list with n copies of 0, and then it returns a function that computes the
length of the list and that, in turn, returns another function that adds the computed
length to n. We expect the space complexity of the program to be O(M): every call
to double requires O(M) space and in the final result we store M closures, each of
them taking up constant space. With linked closures, however, each closure that is
created for g will maintain a pointer to the closure environment of f that in turn
points to a list of length increasing from 1 to M , that cannot be reclaimed by the
garbage collector, even though it is not needed. Since the final list keeps M closures,
the space required for the execution of the program is O(M2).

The Javascript V8 engine uses linked environments. Furthermore, it attempts to
save time and space by sharing environments between all closures that are defined in
the same scope. Environments are created eagerly upon entry to a scope. Although
this may appear reasonable as it reduces closure-creation time, if the free variables
of different functions have different (future) lifetimes, it is not safe for space. As in

104

fun double (n : Z) : unit → unit → Z =
let l = repeat 0 n in

fun f () =
let m = length l in

fun g () = m + n in

g

in f

fun app (n : Z) : list (unit → Z) =
if n = 0 then []
else double n () : : app (n − 1)

app n

...

gcode

0 0 . . . 0

m

l n

...
...

n closures

Figure 7.2: Linked closures are not safe for space. Each g closure contains (indirectly)
a different long list l, while a flat closure for g would contain only the two integer
values of m and n.

the previous case, variable lifetimes may extend past the lifetime of functions they
are originally used, and lead to asymptotically worse space consumption [46, 51].

Therefore: Since unsafe-for-space closures can worsen the memory usage of a pro-
gram by much more than a constant factor, it is important to use safe-for-space
closure conversion.

7.2.3 The Main Theorem

The top-level corollary that we wish to establish states: Let e be a closed program in
our compiler’s CPS intermediate language. Let ē, in the same language, be the output
of the closure-conversion phase. Suppose e evaluates to value v1 and final heap H1,
using time c1 and space m1. Then ē evaluates to value v2 with heap H2 using time c2
and space m2, such that: (v1, H1) relates to (v2, H2), c1 ≤ c2 ≤ Ktime ∗ c1, and
m2 ≤ m1 + spaceexp(e); where Ktime is a small constant and spaceexp(e) a function
linear in the size of the source program e. The additive factor in the space bound
accounts for the amount of allocation that happens during the evaluation of the
expression e (i.e., until the next function call happens or the program returns), that is
the maximum that the space consumption of the target can diverge from the idealized
space consumption of the source program.

In addition, a second corollary applies to programs e that diverge: ē diverges, but
its space consumption is guaranteed to remain within bounds.

7.3 Language and Memory Model

Our compiler CPS-converts into a continuation-passing style intermediate represen-
tation, and the back-end uses heap-allocated closures for both user functions and

105

continuations, and no runtime stack. This greatly simplifies the interface between
the compiler and garbage collector: there is no need to specify how to find roots in
the stack. Such specifications can be enormously complicated [44]; furthermore, no
C compiler (and certainly no verified C compiler) supports a method to keep track of
root-pointers in the stack. McCreight et al. [96] show how to make a source-to-source
transformation in C to keep track of roots using a shadow stack, which we employed
for the λANF extension.

Let us begin the formalization with the definition of the untyped CPS lambda
calculus (λCPS) on which we apply the closure conversion transformation. We will also
formalize the heap model used by the semantics of the language that I will describe
in Section 7.5.

7.3.1 Syntax

(Variables) x, y ∈ Var

(Constructors) C ∈ Constr

(Expressions) e ∈ Exp ::= let x = C(y) in e Construction
| let x = y.i in e Projection
| case y of [Ci → ei]i∈I Case
| fun f x = e1 in e2 Function def.
| f x Continuation call
| ret(x) Halt

(Contexts) E ∈ Ctx ::= [·] | let x = C(y) in E | let x = y.i in E
| fun f x = e in E

(Locations) l ∈ Loc

(Values) v ∈ Val ::= l | fun f = e
(Environments) σ ∈ σ = Var⇀ Val

(Blocks) b ∈ Block ::= C(v) | Clo(v1, v2) | Env(σ)
(Heaps) h ∈ Heap = Loc⇀ Block

Figure 7.3: Syntax and memory model of λCPS.

Expressions. The intermediate language (Figure 7.3) is exactly the same as λANF,
presented in Section 3.2, but without the let-bound application node. For clarity and
completeness, I show the definition of the language here too. In the CPS language,
the return construct plays the role for the halting continuation that returns the result
of the evaluation to the top-level.

I also (re)define evaluation contexts E for the expressions of the calculus. I will
use contexts to describe new code introduced by closure conversion, so we include
only the relevant constructors of the language.

106

Values and Blocks. The notion of value in this formalization is different from the
one we previously saw in Section 3.2. Values in this formalization are either pointers
to heap blocks or function pointers. A heap block represents either a constructed
value, a closure, or an environment. A block representing a constructor contains the
constructor tag followed by pointers to the constructor arguments. Before closure
conversion, closures are represented as a special type of block consisting of a pair of
two values, with the first one expected to be a code pointer and the second one an
environment, which is also a special type of memory block. After closure conversion,
closures and their environments will be explicitly constructed by the program and
will be represented as constructed values, therefore the target code will only use
blocks that represent constructed values. A heap is represented as a partial map
from locations to blocks.

I model function pointers as the actual code of the function: the space taken
up by the code of the program is statically known and does not change during the
execution. I do not account for executable code in memory.

Heap Implementation. In the formal development, the definitions are parameter-
ized (using Coq’s module system) by a heap implementation that satisfies an abstract
interface. To prove the realizability of the abstract heap model, I provide a concrete
implementation of heaps that realizes the abstract interface.

Let us move on to some definitions that will be useful later for the formalization
of the source and target cost models and the garbage collector.

Free Locations. The set of locations that appear in a value can be either a singleton
or an empty set:

FLVal(l) = {l} FLVal(fun f x = e) = ∅

We can then define the locations that appear free in an environment in a subset S of
its domain, where σ[S] is the image of S under σ.

FLσ(σ)[S] =
⋃

v∈σ[S]

(FLVal(v))

We simply write FLσ(σ) to denote the locations of an environment on its whole do-
main. This is a useful definition: the set FLσ(σ)[fv(e)] will be the root set of garbage
collection.

Using the above definition we can give a definition for the locations that appear
free inside a memory block.

FLBlock(C(v)) =
⋃
v∈v(FLVal(v)) FLBlock(Env(σ)) = FLσ(σ)

FLBlock(Clo(v1, v2)) = FLVal(v1) ∪ FLVal(v2)

107

Heap Reachability. Given a set of locations S and a heap H, we define the set of
locations that can be reached in one dereferencing step from S as follows.

Post(H)[S] =
⋃

b∈H[S]

(FLBlock(b))

Then, the reachable locations from a root set S of pointers can be defined as the least
fixed point of the Post operator.

R(H)[S] =
⋃
n∈N

((Post(H))n[S])

Heap Size. To give a formal account for the space consumption of a program, we
shall first define the size of a heap. We consider values to be word-sized, as they are
either heap or function pointers. First, we define the size of a heap-allocated block as
the number of words that it takes up in memory. Blocks that represent constructed
values have size equal to a word, that is used to represent the constructor tag, plus
the number of the arguments, which are all word-sized values. The size of a block
that represents a closure has a constant size equal to three words that are taken up
by the tag and the two values that follow it. Lastly, environments have size equal to
a word (for the tag) plus the number of bindings in the environment.

size(C(v)) = 1 + length(v) size(Clo(v1, v2)) = 3 size(Env(σ)) = 1 + |σ|

We then define the size of the heap as the sum of the sizes of the allocated blocks.

size(H) =
∑

l∈dom(H)

size(H(l))

It is also useful to define the size of the reachable portion of the heap from a root
set S, by restricting the sum to only those blocks that are both in the domain of the
heap and reachable from the root set.

sizeR(H)[S] =
∑

l∈dom(H)∩R(H)[S]

size(H(l))

7.4 Heap Isomorphism

To specify garbage collection we first formalize a notion of heap isomorphism. After
garbage collection the resulting heap will not necessarily be a subheap of the initial
heap. Garbage collection algorithms may copy the contents of a location into another
to compact the allocated space. Hence, the specification of garbage collection must
describe that the reachable portions of the heap before and after garbage collection

108

are equal up to an injective renaming of locations. Injectivity ensures that the same
amount of sharing happens before and after garbage collection.2

We start by defining a relation on pairs of values and heaps that holds when
two values represent the same data structure in their corresponding heaps. This
relation is defined simultaneously with the corresponding relations for environments
and heap blocks. These definitions recursively look up pointers in the heap to check
if the represented data structures are the same. To ensure well-foundedness of the
definitions in the presence of heap cycles,3 the definitions are indexed by a natural
number indicating the maximum lookup depth in the heap.

Value equivalence4 is denoted (v1, H1) ≈nβ (v2, H2) where n is the lookup index and
β a location renaming, represented as a total function on locations. Two values are
equivalent if they are either both equivalent locations or equivalent function pointers.
Two locations are equivalent if a.) they agree on the location renaming and b.) they
are either both undefined or both point to equivalent blocks (denoted (b1, H1) ∼iβ
(b2, H2) and its definition is given below). Two function pointers are equivalent if
they syntactically represent the same function.

(l1, H1) ≈nβ (l2, H2)
def
= l2 = β(l1) ∧
∀i < n, (b1, H1) ∼iβ (b2, H2) if H1(l1) = b1

and H2(l2) = b2

(l1, H1) ≈nβ (l2, H2)
def
= l2 = β(l1) if l1 6∈ dom(H1)

and l2 6∈ dom(H2)

(v,H1) ≈nβ (v,H2)
def
= True if v = fun f x = e

(v1, H1) ≈nβ (v2, H2)
def
= False otherwise

We define environment equivalence and then use this to define equivalence on
blocks representing closure environments. Two environments are equivalent in a set
S of free variables, denoted S ` (σ1, H1) ≈̇nβ (σ2, H2), if for any variable in the set,
both environments map the variable to values that are equivalent in the given heaps,
or both mappings are undefined.

S ` (σ1, H1) ≈̇nβ (σ2, H2)
def
= ∀x ∈ S, (∃v1 v2, σ1(x) = v1 ∧ σ2(x) = v2 ∧

(v1, H1) ≈nβ (v2, H2)) ∨
(x 6∈ dom(σ1) ∧ x 6∈ dom(σ2))

When the set S is the set of all variables we simply write (σ1, H1) ≈̇nβ (σ2, H2).

2Conventional garbage collectors are injective; hash-consing collectors [13] are not.
3λCPSdoes not build circular data structures, but the framework is extensible to mutable references.
4I use the term “equivalence” only nominally for these definitions. Only if we existentially

quantify the location renaming are these relations equivalences. However, we want to keep the
location renaming transparent in our definitions in order to use it in the semantics.

109

Using the above definitions we can define block equivalence. Two heap blocks are
equivalent in their corresponding heaps if they are both constructed values with the
same outermost constructor and arguments that are pairwise equivalent values, or if
they are both closures whose arguments are pairwise equivalent values, or if they are
both equivalent environments.

(C(v1, . . . vn), H1) ∼nβ (C(v′1, . . . v
′
n), H2)

def
= ∀i, (vi, H1) ≈nβ (v′i, H2)

(Clo(v1, v2), H1) ∼nβ (Clo(v′1, v
′
2), H2)

def
= (v1, H1) ≈nβ (v′1, H2) ∧

(v2, H1) ≈nβ (v′2, H2)

(Env(σ1), H1) ∼nβ (Env(σ2), H2)
def
= (σ1, H1) ≈̇nβ (σ2, H2)

(b1, H1) ∼nβ (b2, H2)
def
= False otherwise

That concludes the (mutually recursive) definition of value equivalence. We can
now define value, environment, and block equivalence for any lookup depth simply
by quantifying over all lookup indexes. To simplify future definitions, we also require
that the renaming is an injective function in the set of reachable locations. I use the
predicate injS(β) that asserts that the function β is injective in the subset S of its
domain.

(l1, H1) ≈β (l2, H2)
def
= ∀ n, (l1, H1) ≈nβ (l2, H2) ∧ injR(H1)[{l1}](β)

S ` (σ1, H1) ≈̇β (σ2, H2)
def
= ∀ n, S ` (σ1, H1) ≈̇nβ (σ2, H2) ∧ injR(H1)[FLσ(σ1)[S]]

(β)

(b1, H1) ∼β (b2, H2)
def
= ∀ n, (b1, H1) ∼nβ (b2, H2) ∧ injR(H1)[FLBlock(b1)]

(β)

Given a set of locations and a renaming of locations, two heaps are isomorphic
with respect to this renaming if all locations in the set are equivalent with their
renaming in their corresponding heaps.

S ` H1 ∼̇β H2
def
= ∀ l ∈ S, (l, H1) ≈β (β(l), H2)

In the following section we will use this definition to give a specification for garbage
collection.

7.5 Profiling Semantics

In this section I formalize the source and target level semantics of λCPS. As in chapter
3, I use environment-based, big-step operational semantics. Unlike the previously
described semantics of λANF, the semantics presented in this chapter manipulate ex-
plicitly the heap of the program. Another difference is that here we need to set up
a different semantics for the source and target programs of closure conversion, even
though the languages are the same. The reason is that before closure conversion,
whenever a function is defined, the source semantics needs to construct a closure,
using the special closure block, by capturing the relevant part of the environment,
and storing it in the heap using the special block type for environments. After closure

110

conversion, the code explicitly constructs environments as ordinary constructed val-
ues, and therefore the target semantics only needs to store the pointer to the closed5

function. The heap of target code will never use the closure and environment blocks,
it will just use constructed values. Our source and target semantics profile the time
and space needed for the execution of the program. Before getting into the details of
our definitions, we discuss informally how we measure time and space.

Time. We use fuel-based semantics for both the source and the target: the com-
putation times out if there are not enough units of time available. At each execution
step the virtual clock winds down by the cost associated with the language con-
structor that is being evaluated, which is proportional to the size of the constructor.
Evaluation succeeds if the provided fuel matches exactly the execution cost of the
program.

Space. Our source space-cost semantics measures the size of the reachable heap at
every evaluation step, and keeps track of the maximum value. That is, a program’s
space cost is the maximum reachable heap space during its execution. Conceptually,
this is the space consumption of an ideal garbage collector strategy that collects all
the unreachable pointers after every execution step.

In principle, we can use the same profiling strategy in the target in order to prove
that closure conversion is safe for space. However, we opt for a different strategy in
the target that models more accurately the consumed space of the target program.
In particular, we keep track of the maximum size of the actual heap (instead of
the reachable heap) during the execution but we run a garbage collector upon every
function entry. Intuitively, this preserves the idealized measurement of space usage
because only a bounded amount of allocation can occur between function calls in
CPS. Functions in continuation-passing style are trees of control-flow (no loops) whose
leaves are function calls, therefore the amount of heap allocation between function
calls is bounded by the path-length of the function. Therefore we overapproximate
the truly live data (compared to measuring at every allocation) by an additive amount
proportional at worst to the size of the program. By using this profiling strategy in the
target, not only we prove that closure conversion is safe-for-space but also that garbage
collecting the heap upon every function entry is a safe-for-space garbage-collection
strategy. Although this strategy is still idealized with respect to what our real garbage
collector is doing, it allows to carry out a part of the refinement proof between the
ideal model and our actual garbage collection implementation simultaneously with
the space safety proof of closure conversion.

5The closure conversion transformation presented here is slightly different from the one presented
in Chapter 4. The closure conversion transformation of this chapter always produces closed functions.
The closure conversion transformation of Chapter 4 allows functions to have free variables if these
refer to some know closed function. Here, we do not do that to avoid allocating special closure and
environment blocks and account for the space they take in the heap. This optimization would be
possible if hoisting functions at the top-level happened simultaneously with closure conversion, so
that functions became immediately closed.

111

Theorem 7.1 (Concrete garbage collection cost (not proved in Coq))
There is a simple garbage collector such that, if a program runs in our target semantics
with time t and space A, then execution cost with the garbage collector is time linear
in t and space linear in A.

Proof Use a simple two-semispace copying collector [10, Ch. 16] in memory M =
4A. Each semispace has size 2A, and when it is full, the collector copies it to the
other semispace using Cheney’s algorithm. Construct an alternate profiling semantics
for the target language, which runs the garbage collector at each function call if the
size of the heap is ≥M/4.

In the alternate profiling semantics, one garbage collection takes cA time, for
some constant c. The program can run for at least A instructions (it takes at least
one instruction to initialize each word of a newly allocated record) before the next
collection. Therefore, the total time to run the program in our alternate semantics is
bounded by (c+ 1)t, and the memory use of our alternate semantics is 4A.

Finally, there is a simple simulation relation between the “ideal-garbage-collector”
target semantics (formalized below) and the “real-garbage-collector” target semantics
(which we do not formalize here). The simulation permits unreachable data to be
absent from the ideal heap, but present (not yet collected) in the real heap. �

The GC specification permits the use of other (more efficient) garbage collection
algorithms, such as generational collection. For any such algorithm, one can formulate
a “real-garbage-collector” target semantics, prove bounds on the space and time usage
of the program, and prove a simulation between the ideal and the real.

7.5.1 Formal Model of Garbage Collection

In this section, I present a relational specification of ideal garbage collection. Given
a root set S, the specification asserts that some heap is the collection of another for
a given location renaming β.

GCS(H1, H2, β)
def
= S ` H1 ∼̇β H2 ∧ dom(H2) ⊆ R(H2)[β(S)]

The two heaps must be isomorphic (up to the given renaming) in the set of the
locations reachable from the root set in the initial heap (this also implies that the
renaming is injective). To ensure that all the unreachable locations are collected, we
require that the domain of the collected heap is a subset of the locations reachable
from the root set in the collected heap. We apply the renaming in the initial root set,
to find the root set of the collected heap.

To justify the specification of garbage collection, I provide an implementation in
Coq of a simple garbage collection algorithm for the concrete heap implementation
and I prove that it satisfies the above specification. The algorithm simply computes
the set of reachable locations from the root set and restricts the domain of the heap to
this set. This algorithm yields the identity renaming, since locations are not moved.

Using the above specification, we can state and prove that garbage collection
respects heap equivalences. That is, if a heap is the collection of another for a given

112

root-set then it is also the collection of an isomorphic heap for the corresponding
root-set and an appropriate renaming.

Theorem 7.2 (GC respects heap equivalence)
Assume that GCS(H1, H2, β) and S ` H1 ∼̇δ H ′1. Then GCδ(S)(H

′
1, H2, β ◦ δ−1).

7.5.2 Operational Semantics

The big-step operational semantics judgment, written H;σ; e ⇓f m
l r with l ∈

{src, trg} for the source and target semantics respectively, states that a configura-
tion (Conf ∈ Heap × σ × Exp) evaluates to a result r. It is indexed by two metrics:
a virtual clock f indicating the available execution steps (decreasing as the program
executes), and m indicating the consumed space during execution. The result can be
either a pair of a value and a heap or an out-of-time exception, written OOT, that
indicates that the program does not terminate within i steps.

The semantics is parameterized with a fuel and a trace monoid, just as in Chap-
ter 3. The fuel monoid models the execution time of the program, just as before.
But unlike the previous semantics, in this semantics the trace monoid models the
consumed space of the program. The carriers of both monoids are the set of natural
numbers. As before we use an auxiliary relation that performs an evaluation step,
while ⇓ takes care of the time and space profiling.

A program diverges if for all values of the clock it yields an out-of-time exception.

H;σ; e ⇑ml
def
= ∀ i, ∃ m′, H;σ; e ⇓i m′

l OOT ∧ m′ ≤ m

The definition is annotated with an upper bound for memory consumption of the
diverging program, which might be infinite and hence it belongs to the set N∪ {∞}.

Source Semantics. The evaluation rules for the source semantics are shown in
Figure 7.4. At every step, the memory consumption is calculated by taking the
maximum of the memory consumption of the rest of the program and the size of
reachable heap before performing the evaluation step (rule Step). The memory
consumption of a program that times out is the size of the reachable portion of
the current heap (rule OOT). The memory consumption of a program just before
returning is zero (rule OOT). At every evaluation step we decrease the virtual clock
by the cost of each rule, which is given by the function cost(e). If at any point
the remaining units of computation are fewer that the units required to evaluate the
outermost constructor the programs terminates with an out-of-time exception.

Most rules are straightforward; here we review the slightly more complicated rules
for function definition and application. The rule for function definition (rule Fun)
first allocates the environment of the closure, that is the current environment re-
stricted to those variables that appear free in the function body. This restriction is
needed to have an accurate space cost model. It then allocates a closure and eval-
uates the continuation of the expression in the current environment extended with
a mapping from the function name to the closure pointer. The cost of evaluating a

113

σ(y) = v alloc(C(v), H1) = (l, H2) H2;σ[x 7→ l]; e ⇓c m
src r

H1;σ; let x = C(y) in e c msrc r
Constr

σ(y) = l H(l) = C(v1, . . . , vj, . . . , vn) H;σ[x 7→ vj]; e ⇓c m
src r

H;σ; let x = y.j in e c msrc r
Proj

σ(x) = l H(l) = Ci(v) H;σ; ei ⇓c m
src r

H;σ; case x of {Ci → e}i∈I c msrc r
Case

alloc(Env(σ|fv(fun f x=e1)
), H1) = (lenv, H2)

alloc(Clo(fun f x = e1, lenv, ,)H2) = (lf , H3) H3;σ[f 7→ lf]; e2 ⇓c m
src r

H1;σ; fun f x = e1 in e2
c m
src r

Fun

σ(x) = v σ(f) = lf H1(lf) = Clo(fun g x = e1, lenv,)
H1(lenv) = Env(σf) H1;σf [x 7→ v][g 7→ lf]; e1 ⇓c m

src r

H1;σ; f x c m
src r

App

σ(x) = v

H;σ; ret(x) 〈0〉 〈0〉src (v,H)
Ret

c < 〈e〉F
H;σ; e ⇓c 〈H;σ;e〉T

src OOT
OOT

H;σ; e c msrc r

H;σ; e ⇓c〈+〉F 〈e〉F m〈+〉T 〈H;σ;e〉T
src r

Step

where
F def

= N T def
= N

〈e〉F
def
= cost(e) 〈H;σ; e〉T

def
= sizeR(H)[FLσ(σ)[fv(e)]]

〈+〉F
def
= + 〈+〉T

def
= max

and

cost(let x = C(y) in e)
def
= 1 + len(y) cost(let x = y.j in e)

def
= 1

cost(case x of {Ci → e}i∈I)
def
= 1 cost(ret(x))

def
= 1

cost(fun f x = e1 in e2)
def
= 1 + |fv(fun f x = e1)| cost(f x)

def
= 1 + len(x)

Figure 7.4: Big-step operational semantics (source).

function declaration is a unit of time plus the number of the free variables of the func-
tion, to account for the implicit closure environment creation. The rule for function
application (rule App) looks up the value of the applied function in the environment

114

that should be a pointer to a closure in the heap. It dereferences the environment
pointer of the closure to find the closure environment, which then extends by binding
the formal parameters to the values of the actual parameters and the name of the
function to the closure pair. It then evaluates the body of the function in the ex-
tended closure environment. Notice that the trace generator in this semantics takes
as input the whole configuration, in order to compute the reachable size of the heap.

Target Semantics. The semantics for evaluating the code after closure conversion
need not construct the closure pair and environment, as this is done explicitly by the
code. Therefore the application and function definition are handled differently in the
target semantics. We also change the way space profiling works: we profile the actual
size of the heap, and we invoke the garbage collector upon function entry. As in
the source semantics, evaluating each constructor incurs a cost. In this case the cost
associated to the function definition will be just one unit of time since the function
is closed and the semantics does not construct the closure environment.

H;σ[f 7→ fun f x = e1]; e2 ⇓f m
trg r

H;σ; fun f x = e1 in e2
i m
trg r

Funcc

σ(x) = v

H;σ; ret(x)
〈0〉 〈0〉

trg (v,H)
Retcc

σ(x) = v σ(f) = fun g x = e GCFLσ([x 7→v][g 7→fun g x=e])[fv(e)](H1, H2, β)

H2; β ◦ ([x 7→ v][g 7→ fun g x = e]); e f m
trg r

H1;σ; f x f m
trg r

Appcc

i < 〈e〉F
H;σ; e ⇓i 〈H〉Ttrg OOT

OOTcc

H;σ; e c mtrg r

H;σ; e ⇓c〈+〉F 〈e〉F m〈+〉T 〈H〉T
trg r

Stepcc

where
F def

= N T def
= N

〈e〉F
def
= cost(e) 〈H〉T

def
= size(H)

〈+〉F
def
= + 〈+〉T

def
= max

Figure 7.5: Big-step operational semantics (target).

Selected evaluation rules are shown in Figure 7.5. In the function definition case
(rule Funcc), the environment is extended with the function name bound to function
pointer before evaluating the continuation. In the application case (rule Appcc), the
values of the actual parameters and the value of the function that is being looked
up in the environment, with the latter expected to be a function pointer. A new
environment is constructed by binding the names of the formal parameters to the
values of the actual parameters and the function name to the function pointer. Before
continuing to the evaluation of the function body, the heap is garbage collected using

115

as roots the locations in environment bindings of the variables of the function. The
garbage collector induces a location renaming that is used to rename the free location
of the environment before proceeding to the evaluation of the function body (denoted
by function composition).

I also define the interpretation of an evaluation context in some given heap and
environment, formalized as a judgment of the form H1;σ1; E Icl H2;σ2, with l ∈
{src, trg}. The judgment asserts that the evaluation context E is interpreted in
heap H1 and environment σ1, yielding a new heap H2 and environment σ2, using c
units of time. The rules of this judgment follow closely the rules of the evaluation
judgment; I do not show them here.

7.6 Closure Conversion

In this section I give a formal account of the flat closure conversion transformation
on the CPS intermediate representation. The closure-converted code will explicitly
construct closure environments and pairs, and will replace free variable occurrences
with environment accesses. Function calls will be modified so that they destruct the
closure pair and pass the closure environment as an argument to the function. After
closure conversion, functions are closed and can be evaluated at the environment that
only contains bindings for the formal parameters and the function name. Therefore,
the post-closure-conversion semantics does not need to capture the environment at
the time of function definition or look it up in the heap during function calls. After
closure conversion, all function definitions can be hoisted to the top level, and there
are only two levels of scope: the global scope and the scope that is local to every
function. The resulting flat, closure-converted code can be directly translated to C.

I formalize closure conversion as a deductive system. The judgment Γ,Φ `(φ,γ)
e ē asserts that ē is the output of closure conversion of a source program e in a
local environment Γ, that contains the names of locally bound free variables (i.e.,
variables declared within the scope of the current function declaration) and a global
environment Φ, that contains the names of free variables in scopes not local to the
current function. The judgment is also indexed by two identifiers: φ (a map from
function names in scope to their closure environment) and γ (the name of the formal
parameter that corresponds to the closure environment in the current function). I
write e ē for the closure conversion of top-level programs in which case Γ,Φ are
empty and φ, γ have dummy values. The global environment Φ is an ordered set,
that represents the order in which the values of free variables are stored in the closure
environment.

I formalize an auxiliary judgment Γ,Φ `(φ,γ) x . E ,Γ′ that associates a list of
free variables x before closure conversion with an evaluation context E , under which
the variables should be used in closure converted code, and a possibly updated local
environment Γ′. Intuitively, the evaluation context will take care of fetching the
values of free variables from the environment parameter or constructing a closure
pair when this is needed. Because we want to project each free variable and construct
a closure pair at most once within each scope, every time a variable is fetched from

116

the environment or a closure is constructed we update the local environment so that
the next time the variable is referenced it will not be projected or constructed again.
Apart from the local and global environments (Γ and Φ respectively), the judgment
has two additional parameters: φ, which a partial map that bind function names in
scope to their corresponding closure environments, and γ, which is the name of the
formal parameter of the environment in the current scope, or a dummy variable if we
are at the top-level scope.

x ∈ Γ Γ,Φ `(φ,γ) x . E ,Γ′

Γ,Φ `(φ,γ) x::x . E ,Γ′
Local

xi 6∈ Γ Φ = x1, . . . , xi, . . . , xn {x} ∪ Γ,Φ `(φ,γ) x . E ,Γ′

Γ,Φ `(φ,γ) xi::x . let xi = γ.i in E ,Γ′
Global

f 6∈ Γ f ∈ dom(φ) {f} ∪ Γ,Φ `(φ,γ) x . E ,Γ′

Γ,Φ `(φ,γ) f::x . let f = Ccc(f, φ(f)) in E ,Γ′
Function

Γ,Φ `(φ,γ) [] . [·],Γ
Empty

Figure 7.6: Free variable judgment.

The rules of the free variable judgment are presented in Figure 7.6. If a variable
is in the local scope (rule Local), then it can be used as-is. The evaluation context
and the local environment do not change. If a pre-closure-conversion variable is in
the global environment (rule Global), then we project the value from the current
environment parameter and we assign it to a binder that shadows its name. We
add the variable to the local environment, so subsequent uses do not cause it to
be projected out again. If a pre-closure-conversion variable is in the domain of the
function environment map φ (rule Function), then it is a function name that must be
packed together with its environment (given by the binding of the map) to construct
a closure pair. Again, the local environment is extended accordingly.

We may now formalize the closure-conversion judgment (Figure 7.7). The rules
for constructor, projection, pattern matching and halt are straightforward propaga-
tion rules. All they need to do is to handle the free variables correctly using the free
variable judgment. The function case (rule ccFun), after picking a fresh name for the
formal environment parameter of the closure-converted function, closure-converts the
body of the function in a local environment that contains only the formal parame-
ters, a global environment that consists of the free variables of the function definition
in some particular order and a function map that has a single binding that maps
function name to its formal environment parameter. The closure-converted code will
then construct the closure environment. The function map will be extended with
a mapping from the newly defined function to the newly constructed environment,
and the continuation will be closure-converted. The application case (rule ccApp),

117

after handling the free variables g and x, projects the code pointer and the environ-
ment parameter out of the closure and performs the application passing the extra
environment argument.

For recursive calls, our closure-conversion transformation will first construct the
closure by packing its code with the current environment, then immediately project
them out to perform the call. During compilation, these administrative redexes, that
do not affect our resource-preservation proof, will be eliminated by a proved-correct
shrink-reduction transformation [22].

Γ,Φ `(φ,γ) y . E ,Γ′ {x} ∪ Γ′,Φ `(φ,γ) e ē

Γ,Φ `(φ,γ) let x = C(y) in e E [let x = C(y) in ē]
ccConstr

Γ,Φ `(φ,γ) y . E ,Γ′ {x} ∪ Γ′,Φ `(φ,γ) e ē

Γ,Φ `(φ,γ) let x = y.i in e E [let x = y′.i in ē]
ccProj

Γ,Φ `(φ,γ) x . E ,Γ′ Γ′,Φ `(φ,γ) ei ēi

Γ,Φ `(φ,γ) case x of {Ci → e}i∈I E [case x of {Ci → ē}i∈I]
ccCase

Γ,Φ `(φ,γ) x . E ,Γ′

Γ,Φ `(φ,γ) ret(x) E [ret(x)]
ccHalt

Γ,Φ `(φ,γ) g::x . E ,Γ′

Γ,Φ `(φ,γ) g x E [let gcode = g.1 in let genv = g.2 in gcode (genv::x′)]
ccApp

FV = fv(fun f x = e1) Γ,Φ `(φ,γ) FV . E ,Γ′
x, FV `([f 7→γf],γf) e1 ē1 Γ′,Φ `(φ[f 7→fenv],γ) e2 ē2

Γ,Φ `(φ,γ) fun f x = e1 in e2 E [fun f γf::x = ē1 in let fenv=Cenv(FV) in ē2]
ccFun

Figure 7.7: Closure conversion.

In our compiler we have a closure-conversion program, a Coq function. Although
we could prove it correct directly, we provide this inductive definition as a relational
specification for closure conversion. This allows us to reason about closure conversion
without worrying about the details of the implementation. Then, we prove that
closure-conversion program is correct w.r.t. the relational specification.

7.7 Logical Relation

In this section I set up the logical relation that we use to prove closure conversion
correct and safe for time and space. The idea is that along with proving functional
correctness we establish the cost bounds on the resources consumed by the evalua-
tion of the source and target programs. I achieve this by parameterizing the logical

118

relation with a pre- and a postcondition. The precondition is imposed on the ini-
tial configurations, and the postcondition is guaranteed to hold on the results of the
evaluation. The logical relation extends the logical relation presented earlier and it
is nonstandard in the following ways:

• It is parameterized by two pairs of pre- and postconditions. The doubling of pre-
and postconditions allows us to prove monotonicity of the logical relation with
respect to these and provide weakening and strengthening rules that important
for compositional reasoning.

• For a certain class of pre- and postconditions, the reasoning applies to diverging
sources as well: we show that divergence is preserved and the memory bound
holds. This is in the same with the divergence preservation result presented in
Chapter 5. The difference is that in addition to divergence preservation, I show
that the memory consumption bound is satisfied by diverging programs as well.

• The logical relation is doubly indexed by a step-index that bounds the depth
of recursion (crucial for the well-foundedness of our definition), and a heap
lookup index that bounds the look up depth in the heap. Although one index
could (seemingly) have served both purposes, we explain why it is important
to decouple the two, and quantify over all lookup indexes in the fundamental
theorem of the logical relation.

• The logical relation satisfies Kripke monotonicity, in that it respects heap iso-
morphism: when two configurations are related, they are related for all pairs of
configurations that are isomorphic to the original configurations. I achieve this
by quantifying over all pairs of isomorphic heap-environment pairs. This allows
to maintain relatedness of the evaluation environment through the execution,
regardless of how irrelevant portions of the heap may change.

Note: This logical relation is stated using the concrete fuel and trace monoids
for time and space profiling and not the abstract fuel and trace monoids.

7.7.1 Configuration Relation: A Failed Attempt

We wish to define a logical relation that allows us to relate the costs of the source
and target programs along with proving semantics preservation. Setting the value
relation aside for now, let us try to define the configuration relation, that relates the
execution of a source and a target configuration.

Following the standard pattern in step-indexed logical relations, we start by stat-
ing that for a given step index when the source evaluates to a result in steps than the
step index, the target program also evaluates to a result that is related with the result
of the source using the value relation. Additionally, we parameterize the relation with
a resource precondition that is imposed on the initial configurations, and a resource
postcondition that holds on the two pairs of the time and space consumption. The re-
source bounds can be program-dependent, hence we add the source configuration as a
parameter to the resource postcondition, that is Post ∈ Conf→ Relation(nat×nat).

119

This is the initial formulation of the expression, or rather configuration, logical
relation:

Ek {P} (H1, σ1, e1) (H2, σ2, e2) {Q}
def
=

∀ r1 c1 m1, P (H1, σ1, e1) (H2, σ2, e2) ⇒ c1 ≤ k ⇒ H1;σ1; e1 ⇓c1 m1
src r1 ⇒

∃ σ2 c2 m2, H2;σ2; e2 ⇓c2 m2
trg r2 ∧ Q (H1, σ1, e1) (c1,m1) (c2, m2) ∧

Vk−c1 {P} r1 r2 {Q}

Where E denotes the relation, k is the step index, P and Q the pre- and postcondition,
and (H1, σ1, e1) and (H2, σ2, e2) the source and target configurations.

We would have been satisfied with this definition if we could prove that closure
conversion inhabits it, as it entails what we wish to establish for the transformation.
But technical complications prevent us from using this definition directly.

Compositional Reasoning. We want to prove compatibility lemmas that we can
use in our closure-conversion proof to establish that each step of the transformation
yields related programs. For instance, to prove the projection case we would need a
compatibility lemma that is stated roughly as follows.

Lemma 7.3
Assume that

• Ck {y} ` {P} (σ1, H1) (σ2, H2) {Q}

• ∀ v1 v2,Vk {P} (v1, H1) (v2, H2) {Q} ⇒
Ek {P} (H1, σ1[x 7→ v2], e1) (H2, σ2[x 7→ v2], e2) {Q}

Then Ek {P} (H1, σ1, let x = y.j in e1) (H2, σ2, let x = y.j in e2) {Q}

The above variant of the lemma is problematic because it forces us to use the
same pre- and postconditions before and after the evaluation of the outer construc-
tor. This happens because the same pre- and postcondition that are enforced for
the current configuration should hold also for future execution of whole functions.
Looking back at the closure-conversion rules, before evaluating the right expression
we should evaluate the context that causes the projection of the free variables, which
(if not empty) consumes some units of time. Therefore, after evaluating this context,
the initial postcondition will no longer hold. The original postcondition should be
reestablished after the evaluation of the two projection constructors, allowing us to
apply the induction hypothesis. To support compositional reasoning we should allow
pre- and postconditions to vary in these rules. As we explain below, we can solve this
issue by decoupling the pair of pre- and postconditions that are local and hold for the
current configurations, from the global that hold for execution of whole functions in
the environment and the result. This is the same approach that we took in Chapter 5.

Heap Monotonicity. The reader familiar with Kripke logical relations might have
already identified a different problem: the logical relation does not directly satisfy

120

the Kripke monotonicity requirement—two configurations that are related should re-
main related for any future execution states. Kripke monotonicity allows to maintain
relatedness of the environments of evaluation during execution of the configuration,
and it is crucial to prove that closure conversion inhabits the logical relation. In our
case, target heaps not only grow, but also shrink and become renamed because of
garbage collection. Our goal is to be able to prove that two related states (i.e., pairs
of environment and heap) remain related for all isomorphic environment-heap pairs:

Ek {P} (H1, σ1, e1) (H2, σ2, e2) {Q} ⇒
fv(e1) ` (σ1, H1) ≈̇β1 (σ′1, H

′
1) ⇒

fv(e2) ` (σ2, H2) ≈̇β2 (σ′2, H
′
2) ⇒

Ek {P} (H ′1, σ
′
1, e1) (H ′2, σ

′
2, e2) {Q}

One could argue that it’s enough to prove the semantics is deterministic up to heap
isomorphism, in order to prove that our logical relation respects heap isomorphism.
This is not the case: to do this we would have to impose additional requirements
that the pre- and postcondition respect heap isomorphism. However, the concrete
instantiations we are interested in are not preserved by heap isomorphism, because
isomorphic heaps can have arbitrary sizes. Therefore, to achieve monotonicity, we
explicitly close our logical definitions over all pairs of isomorphic environment-heap
pairs.

Step Indexing. It is common in logical relations that are used to model the se-
mantics of state, to use the step index to bound the lookup depth in the heap and
avoid circularities. This technique was use by Ahmed [5, 4] to provide a stratified
semantics of mutable state. Typically, this heap index is the same as the step index.
In our case, we decouple these two indices. The reason is that when we carry out the
proof, by induction on the step index, we will need the environment relation to hold
for all heap indices, as it enforces useful heap invariants.

7.7.2 Logical Relation Definition

With all this in mind, we can now simultaneously define a value relation that relates
the results of evaluation, and a configuration relation that relates the execution of
two configurations. The relations are defined by induction on two indexes, the usual
step index that indicates the maximum recursion depth, and the lookup index that
indicates the maximum heap lookup depth.

Configuration Relation. The configuration relation in its final form appears be-
low. Decoupling the indexes i and j is essential for the correctness proof—by quan-
tifying over all lookup indexes we are able to relate the heaps at any depth for any
given step index

121

E (k,j) {PG;PL} (H1, σ1, e1) (H2, σ2, e2) {QG;QL}
def
=

∀ σ′1 H ′1 β1 σ′2 H ′2 β2 r1 c1 m1,
fv(e1) ` (σ1, H1) ≈̇β1 (σ′1, H

′
1) ⇒

fv(e2) ` (σ2, H2) ≈̇β2 (σ′2, H
′
2) ⇒

c1 ≤ k ⇒ PL (H ′1, σ
′
1, e1) (H ′2, σ

′
2, e2) ⇒

H ′1;σ
′
1; e1 ⇓c1 m1

src r1 ⇒ not stuck(H ′1;σ
′
1; e1) ⇒

∃ r2 c2 m2 β,
H ′2;σ

′
2; e2 ⇓c2 m2

trg r2 ∧
QL (H1, σ1, e1) (c1,m1) (c2, m2) ∧
V (k−c1,j)
β {PG} r1 r2 {QG}

We additionally require that the source program cannot get stuck, that is, for
any given fuel it either terminates with a result or yields an out-of-time exception.
This is needed to exclude programs that may time out with small fuel values but get
stuck later. Observe that this is not a requirement in the logical relations that we
saw earlier. This is because the cost model we used in the previous setup assigned
the same cost to every constructor of the language. In these semantics, the cost of
the constructors can be different and therefore the source might time out for a fuel
that allows the target to execute more steps. Knowing that the source is not stuck
allows us to prove that the target can time out later than the source program.

Value Relation. The value relation (Figure 7.8) relates the result of two executions
at a given step index i, lookup index j and location renaming function β, which keeps
track of the mapping between source and target locations. Tracking the renaming
allows us to establish that the reachable locations in the two heaps are in bijective
correspondence.

Results are related as follows: An out-of-time exception relates only to an out-of-
time exception. A pair of a location and a heap is related to another such pair if a.)
both locations point to a constructed value in the heap, the target location agrees
with the mapping of the source location of renaming function, and the arguments
of the constructors are pairwise related at a strictly smaller lookup index; or b.)
the source location points to a closure value and the target location points to a
closure record. The closure environments must be related by the closure environment
relation (shown below). In addition, for any source and target heaps isomorphic to the
original ones at the root set that contains the closure environment, the function maps
logically related values to logically related results, and any strictly smaller step index.
The environment part of the configuration is the environment part of the closure for
the source, and singleton environment mapping the environment parameter to the
appropriate location for the target, both extended with the appropriate bindings for
the formal parameters and the recursive function. We additionally require that the
precondition holds upon function entry. This is crucial in order to instantiate the
precondition premise of the configuration relation in the application case.

122

V(k,j)
β {P} OOT OOT {Q} def

= True

V(k,j)
β {P} (l1, H1) (l2, H2) {Q}

def
= If H1(l1) = C(v1) and H2(l2) = C(v2).

β(l1) = l2 ∧

∀ (j′ < j), V(k,j′)
β {P} (v1, H1) (v2, H2) {Q}

V(k,j)
β {P} (l1, H1) (l2, H2) {Q}

def
= If H1(l1) = Clo(fun f1 x = e1, lenv1)

and H2(l2) = Ccc(fun f2 γ::x = e2, lenv2).

∀ (j′ < j), CL(k,j′)
β {P} (lenv1 , H1) (lenv2 , H2) {Q} ∧

∀(i < k) H ′1 β1 l
′
env1 H

′
2 β2 l

′
env2 v1 v2,

(lenv1 , H1) ≈β1 (l′env1 , H
′
1) ⇒ (lenv2 , H2) ≈β2 (l′env2 , H

′
2) ⇒

alloc(H ′1, Clo(fun f1 x = e1, l
′
env1 ,)) = (lf1 , H

′′
1) ⇒

H ′1(l
′
env1) = Env(σf1) ⇒

(∀j, V(k,j)

β2◦β◦β−1
1

{P} (v1, H
′
1) (v2, H

′
2) {Q}) ⇒

P (H ′′1 , σ1, e1) (H ′2, σ2, e2) ∧
(∀j, E(i,j) {P ;P } (H ′′1 , σ1, e1) (H ′2, σ2, e2) {Q;Q})

where σ1 = σf1 [x 7→ v1][f1 7→ lf1] and σ2 = [γ 7→ l′env2 , x 7→ v2, f2 7→ fun f2 γ::x = e2].

V(k,j)
β {P} (l1, H1) (l2, H2) {Q}

def
= False Otherwise.

Figure 7.8: Value relation

Closure Environment Relation. The closure relation mentioned by the above
definition is defined simultaneously with the value relation and it relates a source
and a target closure environment pointers. It asserts that the locations of the two
pointers agree with the location renaming and that the values of each environment
are pairwise related.

CL(k,j′)
β {P} (l1, H1) (l2, H2) {Q}

def
=

∃σ, x1, . . . , xn, v1, . . . , vn,
l2 = β(l1) ∧ H1(l1) = Env(σ) ∧ H2(l2) = C(v1, . . . , vn) ∧
dom(σ) = {x1, . . . , xn} ∧

∧i∈[1,n] V (k,j)
β {P} (σ(xi), H1) (vi, H2) {Q}

Environment Relation. As usual, we lift the value relation to environments. The
environment relation is annotated with a set of free variables and states that every
variable in the set that is bound in the first environment, is also bound in the second
environment and the bindings are logically related.

C(k,j)
β S ` {P} (σ1, H1) (σ2, H2) {Q}

def
=

∀(x ∈ S) v1, σ1(x) = v1 ⇒ ∃ v2, σ2(x) = v2 ∧ V (k,j)
β {P} (v1, H1) (v2, H2) {Q}

123

7.7.3 Properties

I discuss formally some important properties of the logical relation.

Relating Nonterminating Programs. A known limitation of logical relations is
the inability to reason about divergence preservation. In the usual formulation of
logical relations, two programs are vacuously related if the source program doesn’t
terminate (or gets stuck). We address this limitation here by adopting a fuel-based
semantics and raising out-of-time exceptions, which as a result of the computation is
logically related only with an other out-of-time exception. We show how this allows us
to prove, for a certain class of postconditions, that the translation of a nonterminating
program is also a nonterminating program, whose memory consumption is within the
desired bounds.

We say a resource is downward (resp. upward) f -bounded if for the resource
consumption of the source rsrc and the target rtrg we have that f(rsrc) ≤ rtrg (resp.
rtrg ≤ f(rsrc)) for some function f .

Theorem 7.4 (Divergence preservation)
Assume E (k,j) {PG;PL} (H1, σ1, e1) (H2, σ2, e2) {QG;QL} and that QL implies that
time cost is downward f -bounded for some invertible function f , and that the memory
consumption is upward g-bounded for some monotonic function g. Then if, for some
m1, H1;σ1; e1 ⇑m1

src then H2;σ2; e2 ⇑m2
trg for some m2. Furthermore, if m1 6= ∞ then

m2 ≤ g(m1).

This theorem requires that the execution time of the source is bounded by the execu-
tion time of the target and the memory usage of the target is bounded by the memory
usage of the source. The proof below gives some intuition about these requirements.

Proof Consider any fuel value i. We will show that the target program diverges
when run with fuel i, with some memory consumption that satisfies the bound. Since
the source diverges, running the source program with f−1(i) must return an OOT
exception with some memory consumption m′1 ≤ m1. From the logical relation, there
exists a fuel j for which the target program also returns an OOT exception and has
some memory consumption m′2. Furthermore, from the postcondition, f(f−1(i)) ≤ j,
that is i ≤ j. Hence, by monotonicity of the resource consumption of the target
evaluation semantics, the target program runs out of time when run with fuel i with
some memory consumption m′′2 ≤ m′2.

To prove the memory bound, we derive from the post condition that m′2 ≤ g(m′1)
and therefore m′′2 ≤ g(m′1). By monotonicity of g and the fact that m′1 ≤ m1 we
obtain that m′′2 ≤ g(m1). �

Local Reasoning. In its first simple form the logical relation did not support
compositional reasoning. We address that by allowing a pair of local and a pair
of global pre- and postconditions that allow us to restate compositional versions of
the compatibility lemmas. Conceptually, by decoupling the global from the local
conditions, we obtain monotonicity for the local conditions as the local postcondition

124

can vary without affecting the global invariant that holds for the execution of whole
functions. As an example, we look again at the projection case for an example of a
compatibility lemma.

First, we state strengthening and weakening properties for the pre- and postcon-
ditions. For compactness, we group constructors that are described as evaluation
contexts together, although these properties are meaningful only when these contexts
are singleton contexts.

Definition 7.5 (Precondition strengthening, context application)
PreCtx E1 E2 e1 e2 P1 P2 asserts that for any evaluation context interpretations
H1;σ1; E1 Ic1 H ′1;σ′1 and H2;σ2; E2 Ic2 H ′2;σ′2, if

P2 (H1, σ1, E1[e1]) (H2, σ2, E2[e2])

holds one the configuration before interpreting the context then

P1 (H ′1, σ
′
1, e1) (H ′2, σ

′
2, e2)

holds one the final configurations.

Definition 7.6 (Postcondition weakening, context application)
PostCtx E1 E2 e1 e2 Q1 Q2 asserts that for any any evaluation context interpretations
H1;σ1; E1 Ic1 H ′1;σ′1 and H2;σ2; E2 Ic2 H ′2;σ′2, if

Q1 (H ′1, σ
′
1, e1) (c,m) (c′,m′)

on the final configuration and its resource consumption, then

Q2 (H1, σ1, E1[e1]) (c+ c1,max(m, sizeR(H1)[FLσ(σ)[fv(E1[e1])]])) (c′ + c2,m
′)

holds on the initial configuration and its resource consumption.

Above, the time consumption of the initial configurations is the time needed for
evaluation of the final configurations, plus the time needed for the interpretation of
the context. The memory consumption of the source is the maximum of the size of
the reachable memory from the initial configurations and the memory consumption
of the final configurations. The memory consumption of the target configuration is
just propagated.

To establish the bounds when both programs timeout, we need to be able to derive
the post condition from the precondition on the current configurations.

Definition 7.7 (Precondition entails postcondition, time-out)
PrePostOOT P Q asserts that if

P (H1, σ1, e1) (H2, σ2, e2)

and c < cost(e1) then

Q (H1, σ1, e1) (c, sizeR(H1)[FLσ(σ)[fv(e1)]]) (c, size(H2))

125

We can now state and prove the projection compatibility theorem in its full gen-
erality, encompassing the weakening and strengthening rules for pre- and postcondi-
tions.

Theorem 7.8 (Projection Compatibility)
Assume that

• PreCtx (let x = y.j in [·]) (let x = y.j in [·]) e1 e2 P
′
L PL

• PostCtx (let x = y.j in [·]) (let x = y.j in [·]) e1 e2 Q
′
L QL

• PrePostOOT PL QL

• ∀ j, C(k,j)
β {y} ` {PG} (σ1, H1) (σ2, H2) {QG}

• ∀ v1 v2,V (k,j)
β {PG} (v1, H1) (v2, H2) {QG} ⇒

E (k,j) {PG;P ′L} (H1, σ1[x 7→ v2], e1) (H2, σ2[x 7→ v2], e2) {QG;Q′L}

Then

E (k,j) {PG;PL} (H1, σ1, E1[let x = y.j in e1]) (H2, σ2, E2[let x = y.j in e2]) {QG;QL}

Heap Size The environment relation has some useful implications for the structure
of the two heaps. First, it implies that the reachable portions of the two heaps
(up to depth equal to the heap lookup index) are well-formed, meaning that there
are no dangling pointers. Therefore, when we quantify over all lookup indexes in
the proof statement we avoid having to also assume and show the preservation of
additional well-formedness assumptions, that are required for the closure conversion
proof. Second, and most importantly, it implies that the set of reachable locations of
the two heaps are in correspondence up to the given renaming.

The closure conversion proof uses this fact to show that directly after function
entry in the source program, and garbage collection in the target program, the sizes
of the heaps are related. By quantifying the environment relation over all heap depths
we can derive that the data structures in the reachable portions of two heaps are in
1-1 correspondence, up to the given renaming. Therefore, we can prove that if two
environments are related:

∀ j, C(k,j)
β S ` {P} (σ1, H1) (σ2, H2) {Q}

then the size of the reachable portion of the target is upper-bounded by the size of
the reachable portion of the source:

sizeR(H2)[FLσ(σ2)[S]] <= sizeR(H1)[FLσ(σ1)[S]].

Notice the use of less than or equal here, since nothing prevents the renaming from
mapping two source locations to the same (related with both) target location.

126

7.8 Correctness Proof

With this machinery we can prove that closure conversion is correct and safe for
space. The theorem states that the source and target programs of closure conversion
are logically related for an appropriate choice of pre- and postconditions. In this
section, I will give the concrete pre- and postconditions for the logical relation proof
and we state the correctness theorem.

7.8.1 Time Bound

We are looking to find bounds for the execution time of the target. To handle di-
vergent programs, the execution time of the closure converted program has to be
lower-bounded by a function of the execution time of the source. This is easy: closure-
conversion only adds cost anyway. To derive an upper bound, consider the running
time of the closure-converted program: for each source construct there will be an over-
head associated with the handling of its free variables, which is at most three steps for
each free variable. Function definitions incur additional overhead for the construction
of the environment, which costs just one extra step (recall that source cost semantics
accounts for cost equal to the number of the free variables of the functions, but this
will be zero in the target since functions are closed). For applications there is also
an additional overhead equal to three steps, associated with the projections of the
code and environment components of the closures and the application of the extra
parameter. For each unit of time spent in the source execution, the overhead of the
target is at most six units of time. Therefore the cost of evaluating the target will
be at most seven times the cost of evaluating the source. The relation we wish to
establish for the execution cost of the two programs is csrc ≤ ctrg ≤ ktime ∗ ctrg, where
ktime = 7.

7.8.2 Space Bound

To derive the space bound, consider how the sizes of the initial configurations relate
immediately after the source enters a function body, and the target calls the garbage
collector after function entry. The size of the target heap will be equal to its reachable
portion, which will contain at most the space reachable from its original arguments
and the space reachable from the environment argument (if the function has free
variables and the environment is used). The latter includes the allocated space for
the environment itself, and the space reachable by the free variables of the original
program, whose values are exactly the fields of the environment record. The reachable
portion of the source heap will contain at least the space reachable by the arguments,
the space reachable by the free variables of the function, and the allocated closure
block itself (code pointer + environment pointer + tag, 3 words) if the function is
recursive and it is references by its own definition. This closure will be allocated
for the target closure too, but unlike the source semantics that does it eagerly, the
target will do it just before the function name is used; so we must account for the
cost of the closure that may be allocated later in the execution of the target. We

127

also account for the size of the environment that may be present in the target. Let
sizeclo = 3 ∗ |{f}∩ fv(e1)|, be the size of the closure in the target heap. If f ∈ fv(e1)
it is 3 words and 0 otherwise. Also, let sizeenv = 1 + |fv(fun f x = esrc)| be the
size of the environment in the target heap. When a function starts executing the two
initial configurations will be related as follows.

size(Htrg) + sizeclo ≤ sizeR(Hsrc)[FLσ(σsrc)[fv(esrc)]] + sizeenv

When evaluating the target function, the heap can grow at most by a an amount
proportional to the size of esrc, until the program returns or the next function is
called and this relation in established again. Let spaceexp(esrc) be the maximum
amount of allocation that can happen during the evaluation of etrg. During the
evaluation of the closure converted function, the size of the target heap, will remain
below sizeR(Hsrc)[FLσ(σsrc)[fv(esrc)]]+sizeenv+spaceexp(esrc). Hence, the memory
consumption of the target program will be upper bounded by the maximum of the
above expression and the memory consumption of the execution of its continuation,
which as a function call obeys a similar upper bound. To relate the execution cost of
the two programs, observe that the size of the reachable portion of the source heap
will be below the memory consumption msrc of the source program, which follows
directly by the way the source space consumption is calculated. Therefore, the target
space consumption will be below the source consumption plus the maximum overhead
incurred by the evaluation of the current function or any future function call.

mtrg ≤ msrc + max(sizeenv + spaceexp(esrc), spaceheap(Htrg))

The function spaceexp(·) captures the maximum amount of allocation that can
happen either during the evaluation of the closure-conversion of its argument, or
during the evaluation of the closure-conversion of a function definition that is nested
inside it. Its definition is shown below.

spaceexp(let x = C(y) in e)
def
= 1 + len(y) + spaceexp(e)

spaceexp(let x = y.j in e)
def
= spaceexp(e)

case y of [Ci → ei]i∈I
def
= max

i∈I
(spaceexp(ei))

spaceexp(fun f x = e1 in e2)
def
= max(|env|+ 3 + spaceexp(e2), |env|+ spaceexp(e1))

where |env| = 1 + len(fv(fun f x = e1))

spaceexp(f x)
def
= 0

spaceexp(ret(x))
def
= 0

Most cases are straightforward, but it is worth discussing the function definition
case, which is the most complicated. We take the maximum of the allocation that can
happen during the evaluation of the current expression and the maximum allocation
that can happen during the evaluation of function being defined. The maximum
allocation that can happen during evaluation of the current expression is size of
the closure environment that will be allocated, the space of the closure that will be

128

allocated (before its first use in this scope), and the space that will be allocated when
evaluating the rest of the program. The maximum allocation that can happen during
the evaluation of function being defined amounts to the size of the environment of
the function plus the space that will be allocated during its evaluation.

The function spaceheap(·) captures the maximum amount of allocation that can
happen when evaluating any function pointer that is stored in the heap and it given
by the following definition.

spaceheap(H)
def
=

max{spaceexp(e) + (1 + |fv(fun f x = e)|) | ∃l, H(l) = fun f x = e}

We have formulated the bound that we expect to hold for the space consumption
of the two programs, but we’re not done yet. These pre- and postconditions will
hold only directly after function entry, not necessarily during the execution of the
two functions. We need to find pre- and postconditions that capture the relation
of the resources at any point during execution. Let us first state the precondition
in a more general way. In particular, assume that for some parameters A and δ we
have that size(Htrg) + 3 ∗ |F | ≤ A + δ, where F are the function names in scope
that have not been used yet, hence the target code has not constructed their closures
and therefore we have to account for their future allocation. A stands for the size of
the reachable source heap at the function entry point and δ is the extra space that
has been allocated during the execution of the target code after the function entry
point. If this assumption holds for the initial target heap, then the postcondition that
bounds the space consumption of the target is captured by the following inequality.

mtrg ≤ max(A+ spaceexp(esrc) + δ,msrc + max(spaceexp(esrc), spaceheap(Hsrc)))

The term A+spaceexp(e1)+δ captures the maximum space consumption for the execu-
tion of the current function, and the term msrc+max(spaceexp(esrc), spaceheap(Hsrc))
the maximum space consumption of any future execution of a function that is either
a function defined in esrc or a heap pointer.

We can now formally state the concrete pre- and postconditions that we wish to
establish when proving closure conversion correct. The local pre- and postconditions
can be defined as shown below.

PL F A δ (Hsrc, σsrc, esrc) (Htrg, σtrg, etrg)
def
= size(Htrg) + 3 ∗ |F | ≤ A+ δ

QL A δ (Hsrc, σsrc, esrc) (csrc,msrc) (ctrg,mtrg)
def
=

csrc ≤ ctrg ≤ ktime ∗ ctrg ∧
mtrg ≤ max(A+ spaceexp(esrc) + δ,msrc + max(spaceexp(esrc), spaceheap(Hsrc)))

Note that the local pre- and postconditions are parameterized by A, δ, and F
which, will are also parameters of the closure conversion proof.

The global pre- and postconditions are instances of the local ones that hold when
considering the execution of whole functions. The parameter F will be passed by

129

the value logical relation (not shown in its definition) and will be the set of free
variables of the function. The parameter δ will be instantiated with the size of the
function’s environment (computed using the cardinality of the set of free variables
F), and parameter A with the size of the reachable portion of the heap upon function
entry.

PG F (Hsrc, σsrc, esrc) (Htrg, σtrg, etrg)
def
=

PL F sizeR(Hsrc)[FLσ(σsrc)[fv(esrc)]] (1 + |F |) (Hsrc, σsrc, esrc) (Htrg, σtrg, etrg)

QG F (Hsrc, σsrc, esrc) (csrc,msrc) (ctrg,mtrg)
def
=

QL sizeR(Hsrc)[FLσ(σsrc)[fv(esrc)]] (1 + |F |) (Hsrc, σsrc, esrc) (csrc,msrc) (ctrg,mtrg)

7.8.3 Correctness

The main correctness theorem states that the input and the output programs of
closure conversion are related when evaluated in related heap-environment pairs. The
logical relation implies semantic preservation and establishes the resource bounds.
In the proofs, I make the explicit assumption that the source program has unique
bindings, and that bound variables are disjoint from the free variables of the program
(i.e., that the program is well scoped). As usual, in the fundamental theorem of the
logical relation, I require that the environments are logically related, and maintain
this invariant throughout the proof. But in the case of closure conversion this relation
holds only for the local environments, that contain parameters of the current function
and locally defined variables, excluding newly defined functions that have not been
used yet (because the closure-converter will not build the closure for a function until
its first occurrence).

Recall the closure conversion judgment: Γ,Φ `(φ,γ) e ē. The environment
Γ corresponds to the local variables and hence its contents will be related by the
environment relation. The evaluation environment also contains the names of the
functions that have been defined locally but have not been used yet (given by the set
dom(φ) \ Γ)—and therefore the target code has not constructed their closures yet—
and the free variables that are not local to the current scope (given by the global
environment Φ).

Two additional environment invariants capture the relations that hold for these
parts of the environment. The first relation asserts that the variables in the global
environment of the source program are logically related with the values stored in the
closure environment of the target program.

FV (k,j)
β Φ; γ ` {P} (σ1, H1) (σ2, H2) {Q}

def
=

∃x1, . . . , xn, v1, . . . , vn, Φ = [x1, . . . , xn] ∧ H2(σ2(γ)) = C(v1, . . . , vn) ∧∧i∈[1,n] V (k,j)
β {P} (σ(xi), H1) (vi, H2) {Q}

130

In the same spirit, we can formulate a relation that connects the closures in the
source with the closures that have not yet been constructed in the target.

F (k,j)
β Γ;φ ` {P} (σ1, H1) (σ2, H2) {Q}

def
=

∀ (f ∈ dom(φ) \ Γ) lf H
′
2, alloc(H2, Ccc(σ2(f);σ2(φ(f)))) = (lf , H

′
2) ⇒

V (k,j)
β {P} (σ1(f), H1) (lf , H

′
2) {Q}

The above relation asserts that the value of a function name in dom(φ) \ Γ in the
source environment is logically related to a freshly allocated location that points to
target closure, whose code component is the value of the function name in the target
environment, and the environment component is the value of the environment name
(φ(f)) in target environment. Maintaining this invariant allows us to establish the
local environment relatedness after the target closure has been constructed and the
function name has been added to the local environment.

Using the above invariants we can state and prove the fundamental theorem of
our logical relation: that the closure conversion relation inhabits the logical relation
for our choice of pre- and postconditions. We additionally require that the location
renaming between the source and target heaps is injective at the reachable portion
of its domain order to establish that the reachable portions of the two heaps are in
bijection.

Theorem 7.9 (Correctness of Closure Conversion)
Assume that

• well scoped(e)

• Γ,Φ `(φ,γ) e ē

• ∀ j, C(k,j)
β Γ ` {PG} (σsrc, Hsrc) (σtrg, Htrg) {QG}

• ∀ j, FV (k,j)
β Φ; γ ` {PG} (σsrc, Hsrc) (σtrg, Htrg) {QG}

• ∀ j, F (k,j)
β Γ;φ ` {PG} (σsrc, Hsrc) (σtrg, Htrg) {QG}

and let F = dom(φ) \ Γ.

Then for all j A δ, E (k,j) {PG; PL F A δ} (Hsrc, σsrc, e) (Htrg, σtrg, ē) {QG; QL A δ}.

The proof is by induction on the step-index and then by case analysis on the ex-
pression. Doing the proof amounts to showing that the contexts generated by the free
variable judgment are related to the source environment when interpreted, and then
for the cases other than application and function definition, applying the compatibil-
ity lemmas and the induction hypothesis (in inductive cases). The application case
is almost immediate using the environment relation. The abstraction case requires
us to show that the newly defined functions are related with F , which we obtain
from the induction hypothesis and the fact that the size bound holds upon function
entry. Finally, we need to show that the concrete pre and postconditions satisfy the
compatibility requirements.

131

Now consider a complete program, one without free variables. If it terminates, the
closure-converted program terminates, the result is correct, and the resource bound
is satisfied: it is safe for space and safe for time.

Corollary 7.10 (Correctness of Closure Conversion, top-level, termination)
If e ē and e ⇓(c1,m1)

src (v1, H1), then there exist v2, H2, c2, m2, β such that

• the target terminates ē ⇓(c2,m2)
trg (v2, H2),

• the results are related ∀ i j, V (k,j)
β {PG} (v1, H1) (v2, H2) {QG}, and

• the resource consumption for time and space is preserved: c1 ≤ c2 ≤ ktime ∗ c1
and m2 ≤ m1 + spaceexp(e) + 1.

If the source program diverges, the closure converted program must also diverge,
and if the source program runs in bounded space then the target must run in some
bounded space related to the source space by the postcondition.

Corollary 7.11 (Correctness of Closure Conversion, top-level, divergence)
If e ē and e ⇑m1

src then there exists m2 such that the target diverges ē ⇑m2
trg and

m2 ≤ m1 + spaceexp(e) + 1.

Coq Development. These results have all been fully formalized in the Coq proof
assistant. The length of the main closure conversion proof is 1855 lines and the logical
relation framework along with the compatibility lemmas is 1815 lines of specification
code and 1921 lines of proof code.

Compositionality. I have presented a resource-safety proof for closure conversion.
For a provably resource-preserving compiler we have to establish this result for all
the passes of the compiler and compose the proofs to get and end-to-end theorem.
Unfortunately, for the reasons explained in Chapter 5 composition cannot happen at
the level of logical relations. Composition can happen using the transitive closure
and exposing pre- and postconditions that are the composition of the ones used for
each composed logical relation. Composing individual resource bounds will give a
bound for the whole pipeline, which might however be very imprecise as individual
factors will be multiplied with each other. If, for instance, two transformations are
upper bounded by factors K and M , then their composition will be upper bounded
by K×M . A more precise bound could be achieved by using a cost model that keeps
track of different steps.

7.9 Related Work

Space-safety of Program Transformations. Others have already observed that
program transformations ought to be safe with respect to their resource consumption.
Minamide [100] proves space-safety of the CPS transformation by showing, using a

132

simulation argument, that CPS preserves the size of the reachable portion in the heap
within a constant factor. This proof is done using a forward syntactic simulation.

Improvement theory. Sands [116, 117] defines a related concept to characterize
transformations guaranteed to never worsen the asymptotic complexity of a program
with respect to a particular resource. A program is called an improvement of another
if its execution is more efficient with respect to a particular resource in any given
program context. To show that a transformation is resource-safe it suffices to show
that local steps of the transformation inhabit a particular improvement relation. This
technique has been studied both in the context of time-safety and space-safety [57, 56].
Theory of space improvement has only been applied to local transformations.

After the publication of the work presented in this chapter [107], Carr [28] in his
master’s thesis explored the formal verification of space safety of transformations.
Carr formally proves in the Coq proof assistant that a globalization transformation
that hoists definitions to higher scopes is safe for space. This work is focused not only
on showing a global upper bound for space safety, but establishing that this bound
will also hold locally too by showing that space bounds holds between I/O events
that can happen nondeterministically. The proof technique is based on syntactic
simulations.

Space bounds in CakeML. After publication of this work [107], a concrete space
cost semantics has been developed for CakeML programs [53]. This cost semantics
allows reasoning about heap and space bounds and is proved sound with respect
to end-to-end compilation. Previously, the top-level theorem of CakeML allowed a
program to terminate early because of insufficient memory resources. The new top-
level theorem of CakeML guarantees that if the source program is safe for space
(the user can prove this assumption using the space cost semantics) then the target
program will successfully terminate. Compared to the work in this chapter, the
cost semantics for CakeML avoids explicit modeling of the heap (which we do here)
by using a time-stamp mechanism to tag aliased values. It is also connected with
a concrete garbage collection implementation, as opposed to the idealized garbage
collection specification that is considered here.

Resource bound certification. Resource consumption bounds can be certified by
showing that these bounds are preserved through a compilation pipeline. Crary [40]
present a decidable type system capable of establishing upper bounds on resource
consumption of programs and they show that these bounds are preserved all the way
to assembly. They do so by introducing a virtual clock that winds down at every
function application. Although this technique suffices to show preservation of time,
it does not scale to space usage in a garbage collected setting. Since memory does
not grow monotonically, “ticks” cannot capture space consumption.

Certified space-preserving compilers for imperative languages exists, but employ
very different proof techniques, that do not directly apply to functional programs and
higher order state. Carbonneaux et al . [26] prove that stack-space bounds established
for C programs are preserved through CompCert by extending the trace preservation

133

proof of the compiler to also prove stack space consumption. Amadio et al . [7] show
that the labeling method, an instrumentation technique for monitoring resources the
program consumes, is preserved through a compilation chain. The labels of the source
program can be used to reason about its execution time, allowing for end-to-end bound
certification. Besson et al . [24] extend the semantics and the proof of CompCert to
verify that memory consumption is preserved.

Logical relations. The application of logical relations to correctness of program
transformations has been studied widely. Our logical relation is unusual in that it
supports reasoning in presence of garbage collection. Hur et al . [64] observed that
Kripke logical relations are not directly compatible with garbage collection because of
the heap monotonicity requirement that is violated in presence of garbage collection.
They address that by the means of logical memories in which locations are never
deallocated. Logical memories are connected to physical memories by a lookup table
that specifies if a location is live in the physical memory and which physical location
it corresponds. Our solution is to close our relation over all isomorphic heaps, hence
guaranteeing that related computations will be related for future, possibly garbage
collected, heaps.

The logical relation used in this chapter uses a stratified model for space, a tech-
nique introduced by Ahmed [5, 4] to provide a semantics of mutable state. We use
technique to avoid circularities in chains of references in the heap. Our model is
unusual in that it decouples the heap stratification index from the step index. This
allows us to maintain invariants that hold for the entirety of the heap, while perform-
ing a proof by induction on the step index.

Garbage collection specification. Our formalization of garbage collection is in-
spired by the one presented by Morrisett et al . [101] in their formalization of an ab-
stract machine for a functional language that allows the heap to be garbage collected
nondeterministically. Our specification of garbage collection is similar to theirs, with
the addition that we require the heap to be fully garbage-collected, which is required
to prove the bounds.

Source cost analysis. Source-level cost analysis is complementary to the work
presented in this paper. Most related to our work are techniques that apply to
higher-order functional languages and support time and space usage [70], and garbage
collection [132, 6].

Recent work in relational cost analysis is closely connected to our work as it is also
concerned with relating the resource consumption of the execution of two programs.
Çiçek et al . [35, 30, 29] develop type-and-effect refinement type systems capable of
establishing precise bounds on the difference in the execution cost of two programs
(or two executions of the same program). The type systems have applications in
reasoning about the cost of incremental computation and reasoning about absence of
side-channel attacks. Çiçek et al . use a logical relation to prove the soundness of the
type system with respect to the concrete cost semantics of the language. We drew

134

inspiration from their logical relation when designing the proof framework presented
in this chapter.

7.10 Conclusion

I have presented the first formal proof that closure conversion with flat closure rep-
resentation is safe for space (as well as correct with respect to evaluation semantics).
To do so I extended the logical relation that was used to prove behavioral refinement
for closure to support reasoning about intensional properties of programs along with
extensional ones. Compared to known limitations of standard logical relations, this
novel relation provides the ability to reason about resource consumption preservation
in the presence of garbage collected heaps. The reasoning can be applied to diverging
source programs as well.

Extension to λANF. I briefly outline how the framework of this chapter could be
adapted to the full fragment of λANF. To handle let-bound function calls we would
have to modify the reachable heap and garbage collection specifications to use the
correct set of live roots that include variables that are live after a function returns.
For that we would have to extend the semantics with a notion of “stack” to keep track
of live variables across function calls since in λANF functions may return. The garbage
collection specification would then have to be invoked not only after function entry,
but also after function return. Of course, we would have to add a new compatibility for
let-bound application and carry out the corresponding case of the closure conversion
proof.

135

Chapter 8

Evaluation

In this chapter, I evaluate the performance of the CertiCoq compiler. I compare the
performance of Gallina programs compiled with CertiCoq, using various configura-
tions, with that of the same programs extracted to OCaml and compiled with the
OCaml bytecode and native compilers. I evaluate different CertiCoq configurations:

• I compare the performance of code compiled through CertiCoq using CPS trans-
formation with that of the code compiled through CertiCoq with direct-style
ANF transformation.

• I evaluate the performance of CertiCoq-generated code using both the clang

compiler and the CompCert compiler.

• I evaluate the performance of the code with and without the lambda-lifting
closure-optimization pass. This optimization has long been known to have un-
predictable behavior, resulting in improved performance in certain programs
and in worse performance in others. To better understand the runtime perfor-
mance of the lambda-lifted code, I evaluate the following aspects of the trans-
formation: 1. Which known call sites are allowed to call a lambda lifted function
instead of its closure. 2. Free variables that are live across calls inside the func-
tion body in which they appear free, are more expensive to pass as parameters.
I run experiments with different threshold values for the number of calls during
which a free variable can be live. 3. The effect of inlining lambda-lifted functions
inside their escaping wrappers.

8.1 Experimental Setup

I run the experiments on a MacOS machine1 with a 2.5 GHz Intel Core i7 proces-
sor. To compile the generated C code, I use Clang 10.0.1 and CompCert 3.7 with
optimization level -O2. To compile the extracted OCaml code, I use OCaml 4.07.0.

To measure the execution time of each benchmark I run it for 100 times and take
the average time.

1x86 64-apple-darwin18.7.0

136

8.2 Benchmarks

For the evaluation of CertiCoq I use a benchmark suite that consists of the following
programs.

List append (demo1). A microbenchmark that appends two lists of booleans.

List map (demo2). A microbenchmark that maps boolean negation over a list of
booleans (using the higher-order function map).

List summation (list-sum). A microbenchmark that constructs a list with 100
elements, all equal to 1, and computes the sum of the elements.

The rest of the benchmarks are larger programs, and some of them are parts of
larger verified software developments.

VeriStar entailment checker (vs-easy and vs-hard). VeriStar [126] is a for-
mally verified decision procedure for a decidable fragment of separation logic. We use
CertiCoq to compile the VeriStar prover and evaluate the performance of deciding
the validity of two entailments, an easy one vs-easy and a harder one vs-hard.

Binomial queue (binom). We use a verified binomial queue implementation [134,
12] to construct two queues (the first one including all the even numbers from 0 to
2000 and the second one including all the odd numbers in the same range), merge
them, and find the maximum element.

Graph coloring (color). We use a formally verified implementation of the Kem-
pe/Chaitin algorithm for graph coloring [32, 12] to color a graph.

SHA encryption (SHA). We use Secure Hash Algorithm 2 with 256 bit digest
(SHA-256) to compute the cryptographic hash of a string consisting of 484 characters.

8.3 Results

8.3.1 CertiCoq CPS vs. CertiCoq ANF vs. OCaml

In Figure 8.3, I compare the performance of the code compiled with CertiCoq using
CPS or direct-style ANF transformation with that of code extracted to OCaml and
compiled with the OCaml bytecode compiler (ocamlc) and the OCaml native compiler
(ocamlopt).

137

CertiCoq CertiCoq ocamlopt ocamlc ANF/ocamlopt
ANF (ms) CPS (ms) (ms) (ms)

demo1 0.036 0.052 0.017 0.034 2.073
demo2 0.012 0.015 0.005 0.010 2.138
list-sum 0.064 0.140 0.038 0.103 1.714
vs-easy 0.090 0.210 0.019 0.220 4.665
vs-hard 29.224 46.098 12.353 112.940 2.366
binom 2.654 5.201 0.627 5.197 4.233
color 17.716 27.108 - - -
sha-fast 22.006 50.820 15.693 69.787 1.402

Figure 8.1: CertiCoq benchmarks: CertiCoq (ANF and CPS) vs . OCaml (native and
bytecode). OCaml numbers for color are omitted because Coq’s built-in extraction
generates illegal code.

CPS vs. ANF In all cases above, the direct-style code outperforms the
continuation-passing style code. The performance of the CPS code could be
improved with more sophisticated techniques to reduce heap allocation such as
using callee-save registers to pass live free variables to continuations [17], and using
optimally linked closure environments [121]. This is consistent with the recent results
in the literature by Farvardin and Reppy [47], who observe that programs with
deep recursion (such us the programs of this benchmark suite) perform better in
direct-style implementations. The performance of CPS could be also improved by
adding support for primitive functions in CertiCoq (such as addition of integers).

CertiCoq vs. OCaml In the above benchmarks, the code compiled with CertiCoq
is between 1.4 and 4.7 times slower than the code generated by the OCaml native
compiler. One source of overhead is the implementation of multi-argument functions
in CertiCoq. CertiCoq will only uncurry known function calls, leaving escaping func-
tions curried. Because of currying, application of unknown functions will be applied
to one argument at a time, causing the allocation of a closure for each intermediate
function result. In OCaml, calls to unknown function can be applied to multiple ar-
guments, and hence a closure will be allocate only if an unknown function is partially
applied [141].

CertiCoq performs significantly better than the OCaml byte code compiler for
the larger benchmarks of the test suite. The two compilation pipelines have similar
performance on the smaller benchmarks demo1 and demo2.

8.3.2 CompCert vs. Clang

In Figure 8.2, I compare the performance of code compiled with CertiCoq and clang

with code compiled with CertiCoq and CompCert (ccomp). The code compiled with
CompCert is slower that the code compiled the Clang compiler for all the benchmarks
of the test suite. At worse, code generated with CompCert runs 4.4 times slower

138

ANF ANF Slowdown CPS CPS Slowdown
+ Clang + ccomp + Clang + ccomp

(ms) (ms) (ms) (ms)

demo1 0.037 0.039 5.9% 0.053 0.054 1.9%
demo2 0.011 0.015 45.5% 0.015 0.016 11.1%
list-sum 0.063 0.062 1.7% 0.138 0.144 4.3%
vs-easy 0.082 0.101 24% 0.200 0.239 19.2%
vs-hard 28.337 42.336 49.4% 46.484 71.369 53.5%
binom 2.622 11.629 343.4% 5.413 11.229 107.4%
color 17.085 20.341 19.1% 25.801 35.344 37%
sha-fast 21.449 29.251 36.4% 49.779 74.431 49.5%

Figure 8.2: CertiCoq benchmarks: CertiCoq + Clang vs . CertiCoq + CompCert.

than code generated with clang (binom), but most of the benchmarks have a more
a reasonable overhead. Savary Bélanger et al . [119, section 6] explain some of the
reasons why clang outperforms CompCert on the output of CertiCoq.

8.3.3 Lambda lifting

Lambda lifting [67] is a transformation that turns free variables of known functions
into formal parameters. Lambda lifting has been used by compilers to eliminate
closures for known functions. CertiCoq’s lambda lifting transformation is described
in Section 4.3.5. For clarity, I review its functionality here. CertiCoq will split each
function into two instances: one to be used at known call sites and one to be used
at escaping occurrences of the function name (parameter passing, function return,
constructor argument). The known function call can be lambda-lifted, meaning that
its free variables will be passed as parameters. The escaping instance will be a wrapper
around the known instance and will immediately call the (possibly lambda-lifted)
known function. To decide which free variables can become parameters and which
functions can be lambda-lifted, we follow these rules.

• Either all free variables of a function will become parameters or none. That
is, after lambda lifting a function must be closed. Partial lambda lifting of a
function creates unnecessary closures, as described in Section 4.3.5.

• After lambda lifting, the number of arguments of each function should not
exceed the number of available registers.

• A free variable that remains live across many calls inside the body of the function
in which it appears is more expensive to pass as parameter than to store in a
closure environment, and hence such free variables are not passed as parameters.

Furthermore, at each known call site we may choose to call the escaping wrapper,
or inline it to call the known function. We follow two different heuristics:

139

• Conservative strategy: the known function instance is called only if the extra
arguments are already in scope (bound in the local scope or free in the current
function). This way we avoid potential growth in closure environments.

• Aggressive strategy: we inline all known calls to call the known lambda-lifted
function.

Lastly, we can choose to inline the calls to the known functions from their wrap-
pers, to avoid the cost of calling the known function from the escaping wrapper when
the function is called from an unknown call site.

In our default configuration, which we base on the results of these experiments, we
choose to inline all calls to known functions, to allow variables to remain live across
at most one call, and not to inline the calls to known functions from wrappers.

First, I compare the performance of CertiCoq code without the lambda-lifting
transformation with the performance of the code compiled with lambda lifting en-
abled. Then, I compare the performance of different lambda lifting configurations,
based on the design parameters I described above. The benchmarks demo1, demo2,
and list-sum remain unaffected by the transformation and are omitted from the
results.

Default configuration

Figure 8.3 shows the performance of CertiCoq compiled with with the lambda lifting
optimization enabled (-O 1) compared with CertiCoq code compiled without lambda
lifting.

ANF ANF + LL Speedup CPS CPS + LL Speedup
(ms) (ms) (ms) (ms)

vs-easy 0.094 0.086 8.2% 0.214 0.211 1.4%
vs-hard 28.115 26.457 5.9% 45.470 45.689 -0.5%
binom 2.614 2.551 2.4% 5.353 6.562 -22.6%
color 17.495 16.906 3.4% 25.942 25.557 1.5%
sha-fast 21.617 21.324 1.4% 49.817 49.851 0.1%

Figure 8.3: CertiCoq benchmarks: CertiCoq ANF/CPS vs . CertiCoq ANF/CPS +
LL (Lambda Lifting).

The most significant improvement is exhibited by the VeriStar benchmark: we
observe a a 8.2% speedup in vs-easy and 5.9% speedup in vs-hard. Interestingly,
lambda lifting incurs a 22.6% overhead in the CPS version of binom. After inspection
of the code, the overhead appears to be coming exclusively from eager projection of
free variables from the environment of continuation closures. In lambda-lifted code,
continuations are always called as unknown functions, and they always enter through
the wrapper. Upon entry, all free variables will be projected out of the environment
all at once, even if they are not needed for this execution (because they are used in a
different branch of a case statement). For example, in binom, the recursive function

140

find-max has such a continuation, causing the projection of unneeded free variables
of the environment at each iteration. To avoid this issue with CPS, we could turn off
lambda lifting for non-recursive functions that escape (such us continuations).

Size of the generated code. In direct code, lambda-lifting decreases the size of
the generated code. For example vs-easy compiles to 54623 loc (lines of C code)
with lambda lifting and to 57071 loc without. For CPS, lambda lifting increases the
size of the code (71464 vs . 75493 for vs-easy).

Remark about the performance of lambda-lifting optimization. Lambda
lifting appears to improve performance the most when it is able to find a free variable
that can be passed through a chain of known calls to the function that uses it. An
example of such case is a patrially applied function in the the VeriStar benchmark.
This benchmark uses a comparison function from the Coq standard library that is
parameterized by the type of comparison (less, equal or greater) it performs.

Inductive comparison : Set :=
Eq : comparison | Lt : comparison | Gt : comparison

Fixpoint compare_cont (r : comparison) (x y : positive) := ...

The VeriStar function expr_cmp uses the partial application of compare_cont to
compare for equality.

Definition compare = compare_cont Eq.

Definition expr_cmp e e’ : comparison :=
... compare v v’ ...

In ANF, the above example will look like,

let x = Eq () in

let compare = compare_cont Eq in

fun expr_cmp e e ’ := . . . let z = compare v in let w = z v ’ in . . .

In the above code, the variable compare (which is a closure) is a free variable of
the function that uses it, and it has to be passed to it through its closure environment
by each caller. This, causes compare to be a free variable of the caller of expr_cmp
and so on. Furthermore, at application time, compare will be applied to its three
arguments one by one, allocating a closure for each intermediate application. Now,
crucially, compare_cont, which after uncurrying is just an uncurry wrapper, will be
inlined, causing the application of compare to be fully applied:

fun expr_cmp e e ’ : comparison := . . . compare_cont’ x v v ’ . . .

141

Where compare_cont’ is the uncurried version of compare_cont.

Now, instead of the partially applied compare, the program will call the fully
applied compare_cont’ x v v’. This is already an improvement, but x is a free variable
of expr_cmp, so again it has to be passed to through a chain of closure environments,
causing expr_cmp and functions that call it to be closure converted.2 Fortunately,
with lambda lifting x can be passed as parameter to expr_cmp and all functions that
call expr_cmp and their callers, eliminating all closures of these functions and turning
them to efficient C-style calls.

Which call sites to inline?

In the following table I evaluate the performance of the conservative inlining strategy
vs . the performance of the aggressive inlining strategy at known call sites. The
conservative strategy only calls the known lambda-lifted functions when the extra
parameters are either already free variables of the caller, or local variables in scope
(that is, it is guaranteed to never increase the free variables of a function). The
aggressive strategy inlines all known calls to they directly call the lambda lifted
function. The aggressive strategy might increase closure allocation but also it exposes
more opportunities for optimization.

LLc
ANF LLa

ANF Speedup LLc
CPS LLa

CPS Speedup
(ms) (ms) (ms) (ms)

vs-easy 0.087 0.083 4.1% 0.214 0.197 8%
vs-hard 28.413 26.652 6.2% 47.391 45.554 3.9%
binom 2.544 2.527 0.7% 6.583 6.536 0.7%
color 17.277 17.017 1.5% 26.288 25.684 2.3%
sha-fast 21.863 21.556 1.4% 50.895 50.417 0.9%

Figure 8.4: CertiCoq benchmarks: CertiCoq ANF/CPS + LLc (conservative inlining)
vs . CertiCoq ANF/CPS + LLa (aggressive inlining) .

We observe that the aggressive strategy (used by our default configuration) is more
efficient. This is because the extra free variables inside the callers can be turned into
parameters themselves, as described above for the vs-easy benchmark, completely
eliminating closure allocation for these functions. Further analysis could be used to
improve this heuristic decision, by approximating which free variables might increase
closure allocation if passed as parameters.

Which free variables to pass as parameters?

CertiCoq’s lambda lifting transformation is parametric on the number of intermediate
calls during which a free variable may be live. I evaluate the performance of lambda

2x has an unboxed representation so it could, in principle, be defined as a global variable in the
generated C code. This optimization is not performed by CertiCoq. However, even if CertiCoq
performed this optimization, the above scenario would still apply to boxed constructors (i.e., heap
allocated objects).

142

lifting when a free variable can be live during at most 0, 1, 2, and 10 calls in order to
become a parameter. The results are shown in Figure 8.5.

LL0 LL1 LL2 LL10

(ms) (ms) (ms) (ms)

vs-easy 0.086 0.076 0.081 0.079
vs-hard 26.553 26.461 26.745 26.736
binom 2.508 2.500 2.508 2.525
color 16.942 17.081 16.909 17.053
sha-fast 21.432 21.331 21.274 21.149

Figure 8.5: CertiCoq benchmarks: comparison of lambda lifting allowing parameters
to be live at most during n calls (LLn).

We observe that there is a trade-off between turning free variables to parameter
eliminating a closure environment and the number of intermediate calls in the body
of the lambda-lifted function during which these variables remain live. Parameters
(typically stored in registers) that remain live across calls generate memory traffic
because their values have to be saved into the stack before the call and restored af-
ter the call. For the VeriStar benchmark (vs-easy and vs-hard), we observe that
the performance peaks when the threshold of calls is 1. After that, the performance
is worsened. For binom the code remains unaffected by this choice, hence the per-
formance stays virtually the same. For color, the performance becomes somewhat
worsened at threshold 1, but it gets improved for larger values, perhaps as more
opportunities for closure elimination are exposed. The performance of sha-fast is
slightly improved by increasing the threshold value.

Inlining of Lambda-lifting Wrappers

Lastly, I evaluate the effect on the performance of the code when the call from the
wrapper is inlined vs . when it is not inlined. This inlining happens after closure
conversion, to avoid exponential (in the size of the nesting depth) blowup in the size
of the code.

LLn
ANF LLi

ANF Speedup LLn
CPS LLi

CPS Speedup
(ms) (ms) (ms) (ms)

vs-easy 0.079 0.079 -0.2% 0.187 0.193 -3.1%
vs-hard 26.620 26.646 -0.1% 45.856 45.359 1.1%
binom 2.508 2.566 -2.3% 6.518 6.569 -0.8%
color 16.988 16.925 0.4% 25.598 25.498 0.4%
sha-fast 21.353 21.213 0.7% 49.632 48.955 1.4%

Figure 8.6: CertiCoq benchmarks: CertiCoq ANF/CPS + LLn (no inlining in wrap-
pers) vs . CertiCoq ANF/CPS + LLi (inlining).

143

We observe that inlining of known calls inside the escaping wrappers has very little
effect on performance. As expected, it also increases the size of the code. The perfor-
mance behavior can be due to various reasons. First, tail calls to known functions are
implemented as efficient jumps by clang (which performs tail-call optimization when
-O2 is enabled). Therefore such calls are already very efficient and inlining them has
little performance improvement.

Moreover, many of the escaping functions are functions that have been uncurried,
using the technique described in Section 4.3.3. For such functions, the lambda-lifted
function has only known occurrences, some of them inside the uncurry wrapper, since
escaping occurrences of this function always refer to the uncurry wrapper. Therefore,
the escaping lambda-lifted wrapper is never used.3

Conclusion and Related Work

Based on the results of these experiments we pick our default lambda lifting configura-
tion: 1. We inline all known calls so that they call directly the lambda-lifted functions
2. we allow variables to be live during at most one call, and 3. we do not inline calls
to known lambda-lifted functions inside their escaping wrappers. Our lambda lifting
approach implements more heuristics than lambda lifting in other compilers, allowing
us to have a more selective lambda-lifting strategy. With our lambda lifting strategy,
we have observed significant performance improvement in some of our ANF bench-
marks, and no performance overhead for the set of benchmarks that were used. For
CPS, the “optimization” results in worse performance, therefore it is best disabled
for CPS compilation.

Flambda. OCaml’s optimizing Flambda pipeline [87, Chapter 21] uses a similar
lambda-lifting transformation to unbox closure environments and store free variables
in registers. The optimization is turned off by default, as it may incur performance
overhead in some programs. To try to mitigate the overhead, small enough functions
will be duplicated by Flambda, so that two different versions of function are created
(which are not defined in terms of each other in the way escaping wrappers are).
The original function will be used at escaping positions and the lambda-lifted one at
known positions.

This strategy does not remove the performance overhead (after all, tail-calls to
known closed functions are very efficient) and, moreover, it will miss the opportunity
to optimize unknown calls to recursive functions with free variables. In CertiCoq,
such calls will enter through the escaping wrapper, that will project all free vari-
ables once and for all and then it will call the efficient C-style known function.4 We

3The uncurry wrappers may also become lambda lifted but this will have no observable effect
in the generated code. The code will always enter through the escaping wrapper, since uncurry
wrappers only escape, and the lambda lifted function will always be small enough to be inlined
inside the body of the lambda-lifting wrapper of an uncurry wrapper.

4Escaping functions that are not recursive are best not to lambda-lift to avoid eager projection
of free variables.

144

anticipate that the lambda-lifting transformation of Flambda could be improved by
implementing some of the design decisions described in this chapter.

GHC. GHC uses lambda lifting as part of its GHC Core compilation-by-
transformation optimizing pipeline [68, 118]. This transformation in GHC also
appears to improve the performance for certain programs but worsen it for others.
The inverse transformation, lambda dropping [42] that turns parameters to free
variables is also explored. Lambda lifting in GHC is performed selectively, in order
to completely avoid lambda lifting functions that escape and are partially applied.
However, GHC’s lambda lifting will not split functions to known and escaping
instances that could expose more optimization opportunities and would allow for
a more flexible selective lambda-lifting strategy. GHC’s selective lambda lifting
approach results in modest performance improvement (1-2%).

145

Chapter 9

Conclusions and Future Work

I have presented the design, implementation, and verification of CertiCoq’s middle
end, an optimization pipeline that compiles CertiCoq’s λANF intermediate language
to a first-order subset of the language that can be readily compiled to first-order
low-level languages.

The design of the λANF pipeline follows a compilation-by-transformation approach
plugging together small, modular transformations that can be verified independently
and composed in arbitrary order. That allows a lot of flexibility in fine-tuning the
pipeline: experimenting with how transformations interact can lead to significant
improvements in the generated code. This design allows new transformations to be
easily introduced, and transformations to be reused multiple times (which is typi-
cal for inlining and shrink reduction). GHC’s Core-to-Core and OCaml’s Flambda
(unverified) optimizing pipelines follow a similar design.

To verify the λANF pipeline I developed a proof framework based on step-indexed
logical relations. The framework presented is novel in that it supports reasoning
about divergence preservation (with the use of a postcondition to relate the number
of steps that the two programs take). Most importantly, I show how individual logical
relation proofs can be composed in order to derive a top-level theorem that supports
correctness of separate compilation, providing a lightweight solution to the lack of
vertical compositionality of logical relations. This technique can be used to show
correctness of separate compilation when programs are compiled through pipelines
that use the same series of intermediate languages but do not necessarily use the
same transformations. It is lightweight in the sense that it applies to any standard
formulation of logical relations and requires no modification to individual proofs of
transformations. I use this framework to show that programs compiled separately
through the λANF pipeline can be linked with each other, regardless of the particular
set of λANF optimizations that they use.

In the last part of the thesis, I showed how to extend the relational proof framework
to reason about the resource consumption of programs and I use it to show that
CertiCoq’s closure conversion transformation is safe for space. This is the first proof
that a closure conversion transformation is safe for space.

146

9.1 Conclusions

I summarize some the take-away messages from the research that I presented in this
thesis.

• Keeping transformations small and modular is a desirable design choice for a
compiler especially in the context of a proved-correct compiler. Many aspects of
compilation and optimization can be expressed as small modular same-language
transformations. That leads to a more extensible compiler design that is more
amenable to formal verification.

• Logical relations are particularly suitable for proving correctness of modular
compiler transformations. The same relation can be used multiple times to ver-
ify different transformations. Compositional reasoning is achieved using com-
patibility lemmas that are proved once and for all and used in every correctness
proof.

• Despite their lack of transitivity, logical relations can be composed to derive
a compositional end-to-end correctness theorem. Programs compiled through
any pipeline that satisfies such a top-level theorem can be linked at the target
level, preserving the behavior of linking in the source level and compiling the
program as a whole unit. The limitation of this approach is that it can be
used only for pipelines that go through exactly the same series of intermediate
representations.

• For a flexible pipeline design, where transformations may be reordered multi-
ple times and composed in different ways, it is important to be able to link
modules that have been compiled with different pipeline configurations. The
relational proof framework of Chapter 5 provides this flexibility: the individual
proofs of transformations can be composed to prove a compositional correctness
specification for any combination of the transformations.

• We can use logical relations to reason about divergence preservation of pro-
grams. Previous solutions to that problem required adding an extra “tick”
instruction with no computational meaning to the intermediate languages of
the compiler. The solution presented in this thesis avoids that by allowing to
establish arbitrary relations on the steps that the execution of the two programs
require.

• Lambda lifting, if implemented carefully, can have a measurable performance
improvement in the generated code. In CertiCoq, we have used lambda lifting
to eliminate function closures and pass free variables of functions in registers
through chains of known function calls, improving both the performance of the
generated code.

• The same relational framework that is used to prove functional correctness can
be used to prove preservation about the resource consumption of programs.

147

The main proof can be parametric in the additional resource invariants that
are being established, allowing proofs to be easily extended to provide more
guarantees about resource preservation.

9.2 Future Work

I outline some potential future directions for the work I have presented.

Additional λANF optimizations. Because of its modular nature, the λANF pipeline
can serve as a framework for implementing and verifying optimizations for functional
languages. The λANF pipeline can be extended with more optimizations, such as argu-
ment specialization (to remove higher-order arguments and therefore reduce closure
allocation), unboxing (e.g ., of tupled arguments), common subexpression elimination,
code-motion transformations, and more sophisticated closure environment represen-
tations.

Extension to Different Source Languages. The λANF intermediate representa-
tion and pipeline could provide a general, verified compilation pipeline for functional
languages. With modest extensions to the λANF language, the pipeline could be used
as a compilation middle end for other functional languages. In particular, with the
addition of primitive operations and primitive data types, the λANF pipeline could
handle compilation of big subsets of languages like OCaml. This is also require to
handle Coq’s new facility for primitive objects (native integers, floats, and arrays).

Compositional correctness framework. It would be interesting to investigate
whether the compositional proof framework can be strengthened by lifting the re-
striction that compilers should use the same sequence of intermediate representations.
This, if possible, would most likely require implementing and proving correct back
translations between adjacent intermediate representations.

End-to-end correctness for CertiCoq. The framework presented here could be
extended to verify the front-end CertiCoq transformations and the code-generation
phase. Defining the framework in a language-generic way could be particularly useful
for this purpose.

Gallina/C verification. CertiCoq emits C, allowing Gallina programs to interact
with C programs. It would be especially useful to be able to verify the interoperation
of Gallina and C code. This could be done in Verified Software Toolchain (VST) [11]
that allows Clight programs to be verified in Coq using separation logic. An open
question is whether the top-level theorem of CertiCoq suffices for this purpose or its
the statement (and the relational framework) must be strengthened.

148

Bibliography

[1] Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative self-adjusting
computation. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’08, page 309–322,
New York, NY, USA, 2008. Association for Computing Machinery.

[2] Norman Adams, David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, and
James Philbin. Orbit: An optimizing compiler for scheme. In Proceedings of
the 1986 SIGPLAN Symposium on Compiler Construction, SIGPLAN ’86, page
219–233, New York, NY, USA, 1986. Association for Computing Machinery.

[3] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quanti-
fied types. In Peter Sestoft, editor, Programming Languages and Systems, pages
69–83, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[4] Amal J. Ahmed. Semantics of Types for Mutable State. PhD dissertation,
Princeton University, 2004.

[5] Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. A stratified semantics
of general references embeddable in higher-order logic. In Proceedings of the 17th
Annual IEEE Symposium on Logic in Computer Science, LICS ’02, page 75,
USA, 2002. IEEE Computer Society.

[6] Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. Parametric infer-
ence of memory requirements for garbage collected languages. In Proceedings of
the 2010 International Symposium on Memory Management, ISMM ’10, pages
121–130, New York, NY, USA, 2010. ACM.

[7] Roberto M. Amadio and Yann Régis-Gianas. Certifying and reasoning on cost
annotations of functional programs. In Proceedings of the Second Interna-
tional Conference on Foundational and Practical Aspects of Resource Analysis,
FOPARA’11, pages 72–89, Berlin, Heidelberg, 2012. Springer-Verlag.

[8] Abhishek Anand, Andrew W. Appel, John Gregory Morrisett, Zoe
Paraskevopoulou, Randy Pollack, Olivier Savary Bélanger, Matthieu Sozeau,
and Matthew Weaver. CertiCoq: A verified compiler for Coq. In CoqPL’17:
The Third International Workshop on Coq for Programming Languages, 2017.

149

[9] Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nico-
las Tabareau. Towards certified meta-programming with typed template-coq.
In Jeremy Avigad and Assia Mahboubi, editors, Interactive Theorem Proving,
pages 20–39, Cham, 2018. Springer International Publishing.

[10] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
New York, 1992.

[11] Andrew W. Appel. Verified software toolchain. In Proceedings of the 20th Euro-
pean Conference on Programming Languages and Systems: Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ESOP’11/ETAPS’11,
page 1–17, Berlin, Heidelberg, 2011. Springer-Verlag.

[12] Andrew W. Appel. Verified functional algorithms, 2020. Version 1.4, http:

//softwarefoundations.cis.upenn.edu.

[13] Andrew W. Appel and Marcelo J. R. Gonçalves. Hash-consing garbage col-
lection. Technical Report CS-TR-412-93, Princeton University Department of
Computer Science, 1993.

[14] Andrew W. Appel and Trevor Jim. Continuation-passing, closure-passing style.
In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’89, page 293–302, New York, NY, USA,
1989. Association for Computing Machinery.

[15] Andrew W. Appel and Trevor Jim. Shrinking lambda expressions in linear time.
Journal of Functional Programming, 7(5):515–540, September 1997.

[16] Andrew W. Appel and David McAllester. An indexed model of recursive
types for foundational proof-carrying code. ACM Trans. Program. Lang. Syst.,
23(5):657–683, September 2001.

[17] Andrew W. Appel and Zhong Shao. Callee-save registers in continuation-passing
style. Lisp Symb. Comput., 5(3):191–221, September 1992.

[18] Andrew W. Appel and Zhong Shao. Empirical and analytic study of stack versus
heap cost for languages with closures. Journal of Functional Programming,
6(1):47–74, 1996.

[19] Henk Barendregt and Herman Geuvers. Proof-Assistants Using Dependent Type
Systems, page 1149–1238. Elsevier Science Publishers B. V., NLD, 2001.

[20] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent La-
porte, David Pichardie, and Alix Trieu. Formal verification of a constant-time
preserving C compiler. Proc. ACM Program. Lang., 4(POPL), December 2019.

[21] Olivier Savary Bélanger. Verified Extraction for Coq. PhD dissertation, Prince-
ton University, 2019.

150

http://softwarefoundations.cis.upenn.edu
http://softwarefoundations.cis.upenn.edu

[22] Olivier Savary Bélanger and Andrew W. Appel. Shrink fast correctly! In
Proceedings of the 19th International Symposium on Principles and Practice of
Declarative Programming, PPDP ’17, page 49–60, New York, NY, USA, 2017.
Association for Computing Machinery.

[23] Nick Benton, Andrew Kennedy, Sam Lindley, and Claudio Russo. Shrinking
reductions in SML.NET. In Clemens Grelck, Frank Huch, Greg J. Michaelson,
and Phil Trinder, editors, Implementation and Application of Functional Lan-
guages, pages 142–159, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[24] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. CompCertS: A memory-
aware verified C compiler using pointer as integer semantics. In ITP 2017 - 8th
International Conference on Interactive Theorem Proving, volume 10499 of ITP
2017: Interactive Theorem Proving, pages 81–97, Brasilia, Brazil, September
2017. Springer.

[25] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a C
compiler front-end. In FM 2006: Int. Symp. on Formal Methods, volume 4085
of Lecture Notes in Computer Science, pages 460–475. Springer, 2006.

[26] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao.
End-to-end verification of stack-space bounds for C programs. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, page 270–281, New York, NY, USA, 2014. Associa-
tion for Computing Machinery.

[27] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. Compositional certified
resource bounds. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’15, pages 467–478,
New York, NY, USA, 2015. ACM.

[28] Jason Carr. Formally Verified Space-Safety for Program Transformations. Mas-
ter’s thesis, Rochester Institute of Technology, 2019.

[29] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann.
Relational cost analysis. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, pages 316–329, New
York, NY, USA, 2017. ACM.

[30] Ezgi Çiçek, Zoe Paraskevopoulou, and Deepak Garg. A type theory for incre-
mental computational complexity with control flow changes. In Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, pages 132–145, New York, NY, USA, 2016. ACM.

[31] Ezgi Çiçek, Weihao Qu, Gilles Barthe, Marco Gaboardi, and Deepak Garg.
Bidirectional type checking for relational properties. In Proceedings of the 40th

151

ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2019, page 533–547, New York, NY, USA, 2019. Association for
Computing Machinery.

[32] Gregory J Chaitin, Marc A Auslander, Ashok K Chandra, John Cocke, Martin E
Hopkins, and Peter W Markstein. Register allocation via coloring. Computer
languages, 6(1):47–57, 1981.

[33] Arthur Charguéraud. Pretty-big-step semantics. In Matthias Felleisen and
Philippa Gardner, editors, Programming Languages and Systems, pages 41–60,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[34] Adam Chlipala. A verified compiler for an impure functional language. In
Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’10, page 93–106, New York, NY,
USA, 2010. Association for Computing Machinery.

[35] Ezgi Çiçek, Deepak Garg, and Umut Acar. Refinement types for incremental
computational complexity. In Jan Vitek, editor, Programming Languages and
Systems, pages 406–431, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[36] Youyou Cong, Leo Osvald, Grégory M. Essertel, and Tiark Rompf. Compil-
ing with continuations, or without? whatever. Proc. ACM Program. Lang.,
3(ICFP), July 2019.

[37] The Coq Development Team. The Coq Reference Manual, version 8.11.2, Au-
gust 2020. Available electronically at https://coq.inria.fr/refman.

[38] Thierry Coquand and Gerard Huet. The calculus of constructions. Inf. Comput.,
76(2–3):95–120, February 1988.

[39] Patrick Cousot and Radhia Cousot. Inductive definitions, semantics and ab-
stract interpretations. In Proceedings of the 19th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’92, page 83–94,
New York, NY, USA, 1992. Association for Computing Machinery.

[40] Karl Crary and Stephanie Weirich. Resource bound certification. In Proceedings
of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’00, pages 184–198, New York, NY, USA, 2000. ACM.

[41] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Proceedings
of the 3rd ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming, PPDP ’01, page 162–174, New York, NY, USA,
2001. Association for Computing Machinery.

[42] Olivier Danvy and Ulrik P. Schultz. Lambda-dropping: Transforming recursive
equations into programs with block structure. SIGPLAN Not., 32(12):90–106,
December 1997.

152

https://coq.inria.fr/refman

[43] Zaynah Dargaye and Xavier Leroy. A verified framework for higher-order uncur-
rying optimizations. Higher-Order and Symbolic Computation, 22(3):199–231,
2009.

[44] Amer Diwan, Eliot Moss, and Richard Hudson. Compiler support for garbage
collection in a statically typed language. In Proceedings of the ACM SIGPLAN
1992 Conference on Programming Language Design and Implementation, PLDI
’92, pages 273–282, New York, NY, USA, 1992. ACM.

[45] Colin Eberhardt. What Is WebAssembly? 2020.

[46] Vyacheslav Egorov. Grokking V8 closures for fun (and profit?), 2012. Blog post.
https://mrale.ph/blog/2012/09/23/grokking-v8-closures-for-fun.

[47] Kavon Farvardin and John Reppy. From folklore to fact: Comparing implemen-
tations of stacks and continuations. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2020,
page 75–90, New York, NY, USA, 2020. Association for Computing Machinery.

[48] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In Proceedings of the ACM SIGPLAN
1993 Conference on Programming Language Design and Implementation, PLDI
’93, pages 237–247, New York, NY, USA, 1993. ACM.

[49] Matthew Fluet and Stephen Weeks. Contification using dominators. SIGPLAN
Not., 36(10):2–13, October 2001.

[50] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge
University Press, USA, 1989.

[51] David Glasser. An interesting kind of JavaScript memory leak, 2013. Blog
post.
https://blog.meteor.com/an-interesting-kind-of-javascript-memory-
leak-8b47d2e7f156.

[52] Benjamin Goldberg and Young Gil Park. Higher order escape analysis: Opti-
mizing stack allocation in functional program implementations. In Proceedings
of the 3rd European Symposium on Programming, ESOP ’90, page 152–160,
Berlin, Heidelberg, 1990. Springer-Verlag.

[53] Alejandro Gómez-Londoño, Johannes Åman Pohjola, Hira Taqdees Syeda, and
Magnus O. Myreen. Do you have space for dessert? A verified space cost seman-
tics for cakeml programs. To appeat at Proc. ACM Program. Lang., 1(OOP-
SLA).

[54] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiong-
nan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep

153

https://mrale.ph/blog/2012/09/23/grokking-v8-closures-for-fun
https://blog.meteor.com/an-interesting-kind-of-javascript-memory-leak-8b47d2e7f156
https://blog.meteor.com/an-interesting-kind-of-javascript-memory-leak-8b47d2e7f156

specifications and certified abstraction layers. In Proceedings of the 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’15, page 595–608, New York, NY, USA, 2015. Association for
Computing Machinery.

[55] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm
Sjöberg, and David Costanzo. Certikos: An extensible architecture for building
certified concurrent os kernels. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’16, page 653–669,
USA, 2016. USENIX Association.

[56] Jörgen Gustavsson and David Sands. A foundation for space-safe transfor-
mations of call-by-need programs. Electronic Notes in Theoretical Computer
Science, 26:69 – 86, 1999. HOOTS ’99, Higher Order Operational Techniques
in Semantics.

[57] Jörgen Gustavsson and David Sands. Possibilities and limitations of call-by-
need space improvement. In Proceedings of the Sixth ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP ’01, pages 265–276, New
York, NY, USA, 2001. ACM.

[58] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Hol-
man, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the
web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017,
page 185–200, New York, NY, USA, 2017. Association for Computing Machin-
ery.

[59] John Hannan and Patrick Hicks. Higher-order uncurrying. In Proceedings of
the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’98, page 1–11, New York, NY, USA, 1998. Association for
Computing Machinery.

[60] Fergus Henderson. Accurate garbage collection in an uncooperative environ-
ment. In Proceedings of the 3rd International Symposium on Memory Manage-
ment, ISMM ’02, page 150–156, New York, NY, USA, 2002. Association for
Computing Machinery.

[61] Jason Hickey, Anil Madhavapeddy, and Yaron Minsky. Real World OCaml.
2014.

[62] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards automatic resource
bound analysis for OCaml. In Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages, POPL 2017, page 359–373,
New York, NY, USA, 2017. Association for Computing Machinery.

[63] Douglas J. Howe. Proving congruence of bisimulation in functional program-
ming languages. Information and Computation, pages 103–112, 1996.

154

[64] Chung-Kil Hur and Derek Dreyer. A kripke logical relation between ml and
assembly. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’11, pages 133–146, New
York, NY, USA, 2011. ACM.

[65] Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. The mar-
riage of bisimulations and kripke logical relations. In Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’12, page 59–72, New York, NY, USA, 2012. Association for
Computing Machinery.

[66] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Establishing browser se-
curity guarantees through formal shim verification. In Proceedings of the 21st
USENIX Conference on Security Symposium, Security’12, page 8, USA, 2012.
USENIX Association.

[67] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equa-
tions. In Proc. of a Conference on Functional Programming Languages and
Computer Architecture, page 190–203, Berlin, Heidelberg, 1985. Springer-
Verlag.

[68] Simon L. Peyton Jones. Compiling haskell by program transformation: A report
from the trenches. In Hanne Riis Nielson, editor, Programming Languages and
Systems — ESOP ’96, pages 18–44, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg.

[69] Simon Peyton Jones and André Santos. Compilation by transformation in the
glasgow haskell compiler. In Kevin Hammond, David N. Turner, and Patrick M.
Sansom, editors, Functional Programming, Glasgow 1994, pages 184–204, Lon-
don, 1995. Springer London.

[70] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann.
Static determination of quantitative resource usage for higher-order programs.
In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’10, pages 223–236, New York,
NY, USA, 2010. ACM.

[71] Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. Validating LR(1)
parsers. In ESOP 2012 - Programming Languages and Systems - 21st Euro-
pean Symposium on Programming, volume 7211 of Lecture Notes in Computer
Science, pages 397–416, Tallinn, Estonia, March 2012. Springer.

[72] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon,
Lars Birkedal, and Derek Dreyer. Iris: Monoids and invariants as an or-
thogonal basis for concurrent reasoning. In Proceedings of the 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’15, page 637–650, New York, NY, USA, 2015. Association for
Computing Machinery.

155

[73] Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor
Vafeiadis. Lightweight verification of separate compilation. SIGPLAN Not.,
51(1):178–190, January 2016.

[74] Andrew W. Keep, Alex Hearn, and R. Kent Dybvig. Optimizing closures in o(0)
time. In Proceedings of the 2012 Annual Workshop on Scheme and Functional
Programming, Scheme ’12, pages 30–35, New York, NY, USA, 2012. ACM.

[75] R. Kelsey and P. Hudak. Realistic compilation by program transformation (de-
tailed summary). In Proceedings of the 16th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’89, page 281–292, New
York, NY, USA, 1989. Association for Computing Machinery.

[76] Andrew Kennedy. Compiling with continuations, continued. In Proceedings of
the 12th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’07, pages 177–190, New York, NY, USA, 2007. ACM.

[77] Chung kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. Parametric
bisimulations: A logical step forward. Technical report, 01 2014.

[78] Andrzej Krzemieński. A serious bug in GCC, 2017. Blog post. https:

//akrzemi1.wordpress.com/2017/04/27/a-serious-bug-in-gcc/.

[79] Ramana Kumar. Self-compilation and self-verification. Technical Report
UCAM-CL-TR-879, University of Cambridge, Computer Laboratory, February
2016.

[80] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.
CakeML: A verified implementation of ML. SIGPLAN Not., 49(1):179–191,
January 2014.

[81] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the International Sym-
posium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization, CGO ’04, page 75, USA, 2004. IEEE Computer Society.

[82] Xuan Bach Le, Thanh-Toan Nguyen, Wei-Ngan Chin, and Aquinas Hobor. A
certified decision procedure for tree shares. In Zhenhua Duan and Luke Ong,
editors, Formal Methods and Software Engineering - 19th International Confer-
ence on Formal Engineering Methods, ICFEM 2017, Xi’an, China, November
13-17, 2017, Proceedings, volume 10610 of Lecture Notes in Computer Science,
pages 226–242. Springer, 2017.

[83] Xavier Leroy. Formal certification of a compiler back-end or: Program-
ming a compiler with a proof assistant. In Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’06, page 42–54, New York, NY, USA, 2006. Association for
Computing Machinery.

156

https://akrzemi1.wordpress.com/2017/04/27/a-serious-bug-in-gcc/
https://akrzemi1.wordpress.com/2017/04/27/a-serious-bug-in-gcc/

[84] Xavier Leroy. Formal certification of a compiler back-end or: Programming a
compiler with a proof assistant. SIGPLAN Not., 41(1):42–54, January 2006.

[85] Xavier Leroy. Formal verification of a realistic compiler. Communications of
the ACM, 52(7):107–115, 2009.

[86] Xavier Leroy. A formally verified compiler back-end. Journal of Automated
Reasoning, 43(4):363–446, 2009.

[87] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. The OCaml system release 4.11, August 2020. Available
electronically at https://coq.inria.fr/refman.

[88] Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Inf.
Comput., 207(2):284–304, February 2009.

[89] Pierre Letouzey. Programmation fonctionnelle certifiée : l’extraction de pro-
grammes dans l’assistant Coq. PhD thesis, 2004. Thèse de doctorat Informa-
tique Paris 11 2004.

[90] Pierre Letouzey. Extraction in coq: An overview. In Proceedings of the 4th
Conference on Computability in Europe: Logic and Theory of Algorithms, CiE
’08, page 359–369, Berlin, Heidelberg, 2008. Springer-Verlag.

[91] Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-
language programs. In Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’07, page
3–10, New York, NY, USA, 2007. Association for Computing Machinery.

[92] Luke Maurer, Paul Downen, Zena M. Ariola, and Simon Peyton Jones. Compil-
ing without continuations. In Proceedings of the 38th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2017, pages
482–494, New York, NY, USA, 2017. ACM.

[93] John McCarthy. Recursive functions of symbolic expressions and their compu-
tation by machine, part I. Commun. ACM, 3(4):184–195, 1960.

[94] John McCarthy. Computer programs for checking mathematical proofs. In
AMS Symposium on Recursive Function Theory, 1961.

[95] John Mccarthy and James Painter. Correctness of a compiler for arithmetic
expressions. In J.T. Schwartz, editor, Proceedings of a Symposium in Applied
Mathematics, Vol. 19.

[96] Andrew McCreight, Tim Chevalier, and Andrew Tolmach. A certified frame-
work for compiling and executing garbage-collected languages. In Proceedings
of the 15th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’10, page 273–284, New York, NY, USA, 2010. Association for
Computing Machinery.

157

https://coq.inria.fr/refman

[97] Robin Milner. Implementation and applications of scott’s logic for computable
functions. In Proceedings of ACM Conference on Proving Assertions about
Programs, page 1–6, New York, NY, USA, 1972. Association for Computing
Machinery.

[98] Robin Milner and R.W. Weyhrauch. Proving compiler correctness in a mecha-
nised logic. Machine Intelligence, 7:51–73, 1972.

[99] Yasuhiko Minamide. Space-profiling semantics of the call-by-value lambda cal-
culus and the CPS transformation. Electr. Notes Theor. Comput. Sci., 26:105–
120, 1999.

[100] Yasuhiko Minamide. Space-profiling semantics of the call-by-value lambda cal-
culus and the CPS transformation. Electr. Notes Theor. Comput. Sci., 26:105–
120, 1999.

[101] Greg Morrisett and Robert Harper. Semantics of memory management for poly-
morphic languages. In Higher Order Operational Techniques in Semantics, Pub-
lications of the Newton Institute, pages 175–226. Cambridge University Press,
1997.

[102] Eric Mullen, Stuart Pernsteiner, James R. Wilcox, Zachary Tatlock, and Dan
Grossman. Œuf: Minimizing the Coq extraction TCB. In Proceedings of the 7th
ACM SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2018, page 172–185, New York, NY, USA, 2018. Association for Comput-
ing Machinery.

[103] Magnus O. Myreen and Scott Owens. Proof-producing synthesis of ML from
higher-order logic. In International Conference on Functional Programming
(ICFP), pages 115–126. ACM Press, September 2012.

[104] Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek
Dreyer, and Viktor Vafeiadis. Pilsner: A compositionally verified compiler
for a higher-order imperative language. In Proceedings of the 20th ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2015, page
166–178, New York, NY, USA, 2015. Association for Computing Machinery.

[105] Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. Func-
tional big-step semantics. In Peter Thiemann, editor, Programming Languages
and Systems, pages 589–615, Berlin, Heidelberg, 2016. Springer Berlin Heidel-
berg.

[106] Scott Owens, Michael Norrish, Ramana Kumar, Magnus O. Myreen, and
Yong Kiam Tan. Verifying efficient function calls in CakeML. Proc. ACM
Program. Lang., 1(ICFP):18:1–18:27, August 2017.

[107] Zoe Paraskevopoulou and Andrew W. Appel. Closure conversion is safe for
space. Proc. ACM Program. Lang., 3(ICFP), July 2019.

158

[108] Daniel Patterson and Amal Ahmed. The next 700 compiler correctness theorems
(functional pearl). Proc. ACM Program. Lang., 3(ICFP), July 2019.

[109] James T. Perconti and Amal Ahmed. Verifying an open compiler using multi-
language semantics. In Proceedings of the 23rd European Symposium on Pro-
gramming Languages and Systems - Volume 8410, page 128–148, Berlin, Hei-
delberg, 2014. Springer-Verlag.

[110] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the
calculus of constructions. In M. Main, A. Melton, M. Mislove, and D. Schmidt,
editors, Mathematical Foundations of Programming Semantics, pages 209–228,
New York, NY, 1990. Springer-Verlag.

[111] Andrew Pitts. Howe’s method for higher-order languages, page 197–232. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press,
2011.

[112] G.D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Com-
puter Science, 1(2):125 – 159, 1975.

[113] Weihao Qu, Marco Gaboardi, and Deepak Garg. Relational cost analysis for
functional-imperative programs. Proc. ACM Program. Lang., 3(ICFP), July
2019.

[114] J. Reynolds. Types, abstraction and parametric polymorphism. In IFIP
Congress, 1983.

[115] Amr Sabry and Philip Wadler. A reflection on call-by-value. In Proceedings
of the First ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’96, page 13–24, New York, NY, USA, 1996. Association for Com-
puting Machinery.

[116] David Sands. Operational theories of improvement in functional languages. In
Rogardt Heldal, Carsten Kehler Holst, and Philip Wadler, editors, Functional
Programming, Glasgow 1991, pages 298–311, London, 1992. Springer London.

[117] David Sands. Improvement theory and its applications. In Andrew D. Gor-
don and Andrew M. Pitts, editors, Higher Order Operational Techniques in
Semantics, pages 275–306, New York, NY, USA, 1998. Cambridge University
Press.

[118] Andre Santos. Compilation by transformation for non-strict functional lan-
guages. PhD thesis, University of Glasgow, July 1995.

[119] Olivier Savary Bélanger, Matthew Z. Weaver, and Andrew W. Appel.
Certified code generation from CPS to C. In preparation. https://

www.cs.princeton.edu/~appel/papers/CPStoC.pdf, October 2019.

159

https://www.cs.princeton.edu/~appel/papers/CPStoC.pdf
https://www.cs.princeton.edu/~appel/papers/CPStoC.pdf

[120] Zhong Shao and Andrew W. Appel. Space-efficient closure representations. In
Proceedings of the 1994 ACM Conference on LISP and Functional Program-
ming, LFP ’94, page 150–161, New York, NY, USA, 1994. Association for Com-
puting Machinery.

[121] Zhong Shao and Andrew W. Appel. Efficient and safe-for-space closure conver-
sion. ACM Trans. Program. Lang. Syst., 22(1):129–161, January 2000.

[122] Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang,
and Chung-Kil Hur. CompCertM: CompCert with C-assembly linking and
lightweight modular verification. Proc. ACM Program. Lang., 4(POPL), De-
cember 2019.

[123] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick
Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Win-
terhalter. The MetaCoq Project. Journal of Automated Reasoning, February
2020.

[124] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo
Winterhalter. Coq Coq correct! Verification of type checking and erasure for
Coq, in Coq. Proc. ACM Program. Lang., 4(POPL), December 2019.

[125] Guy L. Steele. Rabbit: A compiler for scheme. Technical report, USA, 1978.

[126] Gordon Stewart, Lennart Beringer, and Andrew W. Appel. Verified heap the-
orem prover by paramodulation. In Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’12, page 3–14,
New York, NY, USA, 2012. Association for Computing Machinery.

[127] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel.
Compositional CompCert. In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’15,
pages 275–287, New York, NY, USA, 2015. ACM.

[128] William W. Tait. Intensional interpretations of functionals of finite type I. The
Journal of Symbolic Logic, 32(2):198–212, 1967.

[129] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott
Owens, and Michael Norrish. A new verified compiler backend for CakeML.
In International Conference on Functional Programming (ICFP), pages 60–73.
ACM Press, September 2016. Invited to special issue of Journal of Functional
Programming.

[130] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott
Owens, and Michael Norrish. The verified CakeML compiler backend. Journal
of Functional Programming, 29, 2019.

[131] Ken Thompson. Reflections on trusting trust. Commun. ACM, 27(8):761–763,
August 1984.

160

[132] Leena Unnikrishnan and Scott D. Stoller. Parametric heap usage analysis for
functional programs. In Proceedings of the 2009 International Symposium on
Memory Management, ISMM ’09, pages 139–148, New York, NY, USA, 2009.
ACM.

[133] Jaroslav Ševč́ık, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagan-
nathan, and Peter Sewell. CompCertTSO: A verified compiler for relaxed-
memory concurrency. J. ACM, 60(3), June 2013.

[134] Jean Vuillemin. A data structure for manipulating priority queues. Commun.
ACM, 21(4):309–315, April 1978.

[135] Philip Wadler. Propositions as types. Commun. ACM, 58(12):75–84, November
2015.

[136] H. Wang. Toward mechanical mathematics. IBM Journal of Research and
Development, 4(1):2–22, 1960.

[137] Peng Wang, Di Wang, and Adam Chlipala. Timl: A functional language for
practical complexity analysis with invariants. Proc. ACM Program. Lang.,
1(OOPSLA):79:1–79:26, October 2017.

[138] Shengyi Wang, Qinxiang Cao, Anshuman Mohan, and Aquinas Hobor. Certi-
fying graph-manipulating c programs via localizations within data structures.
Proc. ACM Program. Lang., 3(OOPSLA), October 2019.

[139] Stephen Weeks. Whole-program compilation in MLton. In Proceedings of the
2006 Workshop on ML, ML ’06, page 1, New York, NY, USA, 2006. Association
for Computing Machinery.

[140] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’11,
page 283–294, New York, NY, USA, 2011. Association for Computing Machin-
ery.

[141] Pascal Zimmer. The dangers of being too partial, 2008. Blog post. https:
//blog.janestreet.com/the-dangers-of-being-too-partial/.

161

https://blog.janestreet.com/the-dangers-of-being-too-partial/
https://blog.janestreet.com/the-dangers-of-being-too-partial/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 The Coq Proof Assistant
	1.2 Verified Compilation
	1.3 Compiling Functional Languages
	1.4 Summary of Contributions

	2 CertiCoq Overview
	2.1 The CertiCoq Pipeline and Runtime
	2.1.1 The Pipeline
	2.1.2 Representation of Coq types in C
	2.1.3 Garbage Collection
	2.1.4 Foreign Function Interface
	2.1.5 Verification
	2.1.6 Collaboration

	2.2 Running CertiCoq

	3 Intermediate Representation
	3.1 Functional Intermediate Representations: CPS vs@let@token . ANF
	3.2 Syntax
	3.2.1 Useful Definitions

	3.3 Semantics
	3.3.1 Big-Step vs@let@token . Small-Step Semantics.
	3.3.2 Formal Definition
	3.3.3 Properties of the Semantics

	3.4 Conclusion

	4 The ANF Optimizing Pipeline
	4.1 Overview
	4.2 Closure Strategies
	4.3 Transformations
	4.3.1 Shrinking
	4.3.2 Inlining
	4.3.3 Uncurrying
	4.3.4 Closure Conversion
	4.3.5 Lambda Lifting
	4.3.6 Dead Parameter Elimination

	4.4 Compilation by Example
	4.5 Related Work
	4.5.1 Optimizations in Other Verified Compilers
	4.5.2 Compilation-by-Transformation in other Compilers

	4.6 Conclusion

	5 Relational Proof Framework
	5.1 Relations for Compiler Correctness
	5.1.1 Reasoning About Linking

	5.2 Logical Relations
	5.2.1 Reasoning with the Logical Relation
	5.2.2 Reasoning About Divergence
	5.2.3 Fuels and Traces
	5.2.4 CertiCoq's Logical Relations
	5.2.5 Reasoning with Local and Global Postconditions
	5.2.6 Compatibility Lemmas
	5.2.7 Properties of the Logical Relations

	5.3 Compositional Proof Framework
	5.4 Related Work
	5.4.1 Other Verified Compilers for Functional Languages
	5.4.2 Compositional Compiler Correctness
	5.4.3 Relational Reasoning for Program Resources

	5.5 Conclusion

	6 Correctness of Transformations
	6.1 Correctness of 2=2pt ANF transformations
	6.1.1 Inlining
	6.1.2 Shrinking
	6.1.3 Uncurrying
	6.1.4 Closure Conversion, Hoisting, and Lambda Lifting

	6.2 Top-level Theorem for 2=2pt ANF
	6.3 Coq Proof Development
	6.3.1 Specification
	6.3.2 Top-level Theorem
	6.3.3 Proof Artifact

	7 Space Safety
	7.1 Introduction
	7.2 Closure Representation
	7.2.1 Flat Closure Representation
	7.2.2 Linked Closure Representation
	7.2.3 The Main Theorem

	7.3 Language and Memory Model
	7.3.1 Syntax

	7.4 Heap Isomorphism
	7.5 Profiling Semantics
	7.5.1 Formal Model of Garbage Collection
	7.5.2 Operational Semantics

	7.6 Closure Conversion
	7.7 Logical Relation
	7.7.1 Configuration Relation: A Failed Attempt
	7.7.2 Logical Relation Definition
	7.7.3 Properties

	7.8 Correctness Proof
	7.8.1 Time Bound
	7.8.2 Space Bound
	7.8.3 Correctness

	7.9 Related Work
	7.10 Conclusion

	8 Evaluation
	8.1 Experimental Setup
	8.2 Benchmarks
	8.3 Results
	8.3.1 CertiCoq CPS vs@let@token . CertiCoq ANF vs@let@token . OCaml
	8.3.2 CompCert vs@let@token . Clang
	8.3.3 Lambda lifting

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work

	Bibliography

