Implicit self-adjusting computation for Costlt Internship Defense

Zoe Paraskevopoulou ${ }^{1,2}$
Advisor: Deepak Garg ${ }^{2}$

${ }^{1}$ ENS Cachan ${ }^{2}$ Max Planck Institute for Software Systems
September 8, 2015

Self Adjusting Computation

- An evaluation mechanism that recomputes only the parts of the output that depend on inputs that have changed between runs
- Change propagation (CP) : the process of updating the parts of the output that depend on changed data
- Implicit self-adjusting computation: The program responds automatically to changes in its inputs without any manual effort from the programmer
- Often results in asymptotic speedup

Change Propagation by Example

Costlt (I)

- A type and effect system that allows us to derive upper bounds on the cost of incremental computation

Costlt (I)

- A type and effect system that allows us to derive upper bounds on the cost of incremental computation
- Judgments: $\Delta ; \Phi ; \Gamma \vdash_{\epsilon}^{\kappa} e: \tau$
- ϵ is the typing mode (\mathbb{S} or \mathbb{C})
- κ is the derived cost

Costlt (I)

- A type and effect system that allows us to derive upper bounds on the cost of incremental computation
- Judgments: $\Delta ; \Phi ; \Gamma \vdash_{\epsilon}^{\kappa} e: \tau$
- ϵ is the typing mode (\mathbb{S} or \mathbb{C})
- κ is the derived cost
- When $\epsilon=\mathbb{S}$ then κ is the upper bound of $\mathbb{C P}$

Costlt (I)

- A type and effect system that allows us to derive upper bounds on the cost of incremental computation
- Judgments: $\Delta ; \Phi ; \Gamma \vdash_{\epsilon}^{\kappa} e: \tau$
- ϵ is the typing mode (\mathbb{S} or \mathbb{C})
- κ is the derived cost
- When $\epsilon=\mathbb{S}$ then κ is the upper bound of $\mathbb{C P}$
- When $\epsilon=\mathbb{C}$ then κ is the worst case execution cost

Costlt (II)

- Functions are annotated with effects $\tau_{1} \xrightarrow{\mu(\kappa)} \tau_{2}$

Costlt (II)

- Functions are annotated with effects $\tau_{1} \xrightarrow{\mu(\kappa)} \tau_{2}$
- When $\mu=\mathbb{S}$ then the result of the function application can be updated with CP with cost $\leq \kappa$

Costlt (II)

- Functions are annotated with effects $\tau_{1} \xrightarrow{\mu(\kappa)} \tau_{2}$
- When $\mu=\mathbb{S}$ then the result of the function application can be updated with CP with cost $\leq \kappa$
- When $\mu=\mathbb{C}$ then the the function application is evaluated from-scratch with cost $\leq \kappa$

Costlt (II)

- Functions are annotated with effects $\tau_{1} \xrightarrow{\mu(\kappa)} \tau_{2}$
- When $\mu=\mathbb{S}$ then the result of the function application can be updated with CP with cost $\leq \kappa$
- When $\mu=\mathbb{C}$ then the the function application is evaluated from-scratch with cost $\leq \kappa$
- Types have changeability annotations τ^{μ}
- $\tau^{\mathbb{S}}$: a value that cannot change between runs
- $\tau^{\mathbb{C}}$: a value that can change between runs
- τ^{\square} : a value that cannot change between nor capture other changeable values

Costlt (II)

- Functions are annotated with effects $\tau_{1} \xrightarrow{\mu(\kappa)} \tau_{2}$
- When $\mu=\mathbb{S}$ then the result of the function application can be updated with CP with cost $\leq \kappa$
- When $\mu=\mathbb{C}$ then the the function application is evaluated from-scratch with cost $\leq \kappa$
- Types have changeability annotations τ^{μ}
- $\tau^{\mathbb{S}}$: a value that cannot change between runs
- $\tau^{\mathbb{C}}$: a value that can change between runs
- τ^{\square} : a value that cannot change between nor capture other changeable values
- Index refinement types (in the style of DML)

Costlt (II)

- Functions are annotated with effects $\tau_{1} \xrightarrow{\mu(\kappa)} \tau_{2}$
- When $\mu=\mathbb{S}$ then the result of the function application can be updated with CP with cost $\leq \kappa$
- When $\mu=\mathbb{C}$ then the the function application is evaluated from-scratch with cost $\leq \kappa$
- Types have changeability annotations τ^{μ}
- $\tau^{\mathbb{S}}$: a value that cannot change between runs
- $\tau^{\mathbb{C}}$: a value that can change between runs
- τ^{\square} : a value that cannot change between nor capture other changeable values
- Index refinement types (in the style of DML)
- Lists : list $[n]^{\alpha} \tau$
- A vector of n elements from which at most α can change

Running Example: map (typing)

$$
\text { map : }\left(\tau_{1} \xrightarrow{\mathbb{C}(\kappa)} \tau_{2}\right)^{\square} \xrightarrow{\mathbb{S}(0)} \text { list }[n]^{\alpha} \tau_{1} \xrightarrow{\mathbb{S}(\kappa \cdot \alpha)} \text { list }[n]^{\alpha} \tau_{2}
$$

- If f executes from-scratch with cost k and 1 has n elements of which at most α can change then map f 1 propagates changes with cost at most $\alpha \cdot \kappa$

Running Example: map (typing)

$$
\text { map : }\left(\tau_{1} \xrightarrow{\mathbb{C}(\kappa)} \tau_{2}\right)^{\square} \xrightarrow{\mathbb{S}(0)} \text { list }[n]^{\alpha} \tau_{1} \xrightarrow{\mathbb{S}(\kappa \cdot \alpha)} \text { list }[n]^{\alpha} \tau_{2}
$$

- If f executes from-scratch with cost k and 1 has n elements of which at most α can change then map f 1 propagates changes with cost at most $\alpha \cdot \kappa$
- Intuition: we need to recompute and update in place only the elements of the list that can change

Soundness (this internship)

- Idea: Translate a Costlt program to a self-adjusting program and show that the actual cost is no more that the cost derived by the type system

(a) First run

(b) Incremental run after input changes

Figure: Schematic representation of the basic properties of the translation

Target Language: saML

- A simply typed lambda calculus with general references

Target Language: saML

- A simply typed lambda calculus with general references
- The runtime is modified to keep track of the computations that need to be re-executed during CP

Target Language: saML

- A simply typed lambda calculus with general references
- The runtime is modified to keep track of the computations that need to be re-executed during CP
- We maintain a global queue that holds closures that are pushed during the first run

Target Language: saML

- A simply typed lambda calculus with general references
- The runtime is modified to keep track of the computations that need to be re-executed during CP
- We maintain a global queue that holds closures that are pushed during the first run
- We add new primitives: push, empty

Target Language: saML

- A simply typed lambda calculus with general references
- The runtime is modified to keep track of the computations that need to be re-executed during CP
- We maintain a global queue that holds closures that are pushed during the first run
- We add new primitives: push, empty
- We push tuples of the form (\vec{l}, f), where \vec{l} is the list of locations that need to be updated and f the closure that computes their new values

Target Language: saML

- A simply typed lambda calculus with general references
- The runtime is modified to keep track of the computations that need to be re-executed during CP
- We maintain a global queue that holds closures that are pushed during the first run
- We add new primitives: push, empty
- We push tuples of the form (\vec{l}, f), where \vec{l} is the list of locations that need to be updated and f the closure that computes their new values
- During the incremental run the computations are popped and executed with a FIFO order

Target Language: saML

- A simply typed lambda calculus with general references
- The runtime is modified to keep track of the computations that need to be re-executed during CP
- We maintain a global queue that holds closures that are pushed during the first run
- We add new primitives: push, empty
- We push tuples of the form (\vec{l}, f), where \vec{l} is the list of locations that need to be updated and f the closure that computes their new values
- During the incremental run the computations are popped and executed with a FIFO order

Running Example: map (translation I)

$$
\operatorname{map}:\left(\text { int }^{\mathbb{C}} \xrightarrow{\mathbb{C}(\kappa)} \text { int }^{\mathbb{C}}\right)^{\square} \xrightarrow{\mathbb{S}(0)} \text { list }[n]^{\alpha} \text { int }^{\mathbb{C}} \xrightarrow{\mathbb{S}(\kappa \cdot \alpha)} \text { list }[n]^{\alpha} \text { int }^{\mathbb{C}}
$$

- Re-apply the argument function only to the elements that have changed and update the output list in-place

Running Example: map (translation I)

$$
\operatorname{map}:\left(\text { int }^{\mathbb{C}} \xrightarrow{\mathbb{C}(\kappa)} \text { int }^{\mathbb{C}}\right)^{\square} \xrightarrow{\mathbb{S}(0)} \text { list }[n]^{\alpha} \text { int }{ }^{\mathbb{C}} \xrightarrow{\mathbb{S}(\kappa \cdot \alpha)} \text { list }[n]^{\alpha} \text { int }^{\mathbb{C}}
$$

- Re-apply the argument function only to the elements that have changed and update the output list in-place
- Store changeable values in reference cells : $\left\|A^{\mathbb{C}}\right\|=$ ref $\|A\|$

Running Example: map (translation I)

$$
\operatorname{map}:\left(\text { int }^{\mathbb{C}} \xrightarrow{\mathbb{C}(\kappa)} \text { int }^{\mathbb{C}}\right)^{\square} \xrightarrow{\mathbb{S}(0)} \text { list }[n]^{\alpha} \text { int }{ }^{\mathbb{C}} \xrightarrow{\mathbb{S}(\kappa \cdot \alpha)} \text { list }[n]^{\alpha} \text { int }^{\mathbb{C}}
$$

- Re-apply the argument function only to the elements that have changed and update the output list in-place
- Store changeable values in reference cells: $\left\|A^{\mathbb{C}}\right\|=$ ref $\|A\|$
- Differentiate between stable and changeable values of a list: $\|$ list $[n]^{\alpha}$ int ${ }^{\mathbb{C}} \|=$ list (int + ref int)

Running Example: map (translation I)

$$
\text { map: }\left(\text { int }^{\mathbb{C}} \xrightarrow{\mathbb{C}(k)} \text { int }^{\mathbb{C}}\right)^{\square} \xrightarrow{\mathbb{S}(0)} \text { list }[n]^{\alpha} \text { int }^{\mathbb{C}} \xrightarrow{\mathbb{S}(\kappa \cdot \alpha)} \text { list }[n]^{\alpha} \text { int }^{\mathbb{C}}
$$

- Re-apply the argument function only to the elements that have changed and update the output list in-place
- Store changeable values in reference cells: $\left\|A^{\mathbb{C}}\right\|=$ ref $\|A\|$
- Differentiate between stable and changeable values of a list : $\|$ list $[n]^{\alpha}$ int ${ }^{\mathbb{C}} \|=$ list (int + ref int $)$

```
`map }\urcorner:(ref int ->ref int) -> list (int + ref int) -> list (int +ref int)
```


Running Example: map (translation II)

```
`map `: (ref int }->\mathrm{ ref int) }->\mathrm{ list (int +ref int) }->\mathrm{ list (int +ref int)
```

```
map fe=
    case}\mp@subsup{\textrm{L}}{2}{}e\mathrm{ of
    |[] 詯
    | h::tl ->f h:: map f tl
```

$$
\begin{aligned}
& \ulcorner\operatorname{map}\urcorner f e= \\
& c a s e_{\mathrm{L}} e \text { of } \\
& \mid[] \rightarrow \\
& \mid h:: t l \rightarrow
\end{aligned}
$$

Running Example: map (translation II)

```
`map `: (ref int }->\mathrm{ ref int) }->\mathrm{ list (int +ref int) }->\mathrm{ list (int +ref int)
```

```
map fe=
    case}\mp@subsup{\textrm{L}}{2}{}e\mathrm{ of
    |[] 詯
    | h::tl ->f h:: map f tl
```

$$
\begin{gathered}
\ulcorner\text { map }\urcorner f e= \\
\text { case } e_{\mathrm{L}} e \text { of } \\
\mid[] \rightarrow[] \\
\mid h:: t l \rightarrow
\end{gathered}
$$

Running Example: map (translation II)

```
`map `: (ref int }->\mathrm{ ref int) }->\mathrm{ list (int +ref int) }->\mathrm{ list (int +ref int)
```

```
map}fe
    case}\mp@subsup{\textrm{L}}{2}{}e\mathrm{ of
    |[] 就
    | h::tl ->f h:: map f tl
```

$$
\begin{gathered}
\ulcorner\operatorname{map}\urcorner f e= \\
\operatorname{case}_{\mathrm{L}} e \text { of } \\
\mid[] \rightarrow[] \\
\mid h:: t l \rightarrow \\
\text { case } h \text { of } \\
\mid h_{l} \rightarrow \\
\mid h_{r} \rightarrow
\end{gathered}
$$

Running Example: map (translation II)

$$
\ulcorner\text { map }\urcorner:(\text { ref int } \rightarrow \text { ref int }) \rightarrow \text { list }(\text { int }+ \text { ref int }) \rightarrow \text { list }(\text { int }+ \text { ref int })
$$

$$
\begin{aligned}
& \operatorname{map} f e= \\
& \operatorname{case}_{\mathrm{L}} e \text { of } \\
& \mid[] \rightarrow[] \\
& \mid h:: t l \rightarrow f h:: \operatorname{map} f t l
\end{aligned}
$$

Running Example: map (translation II)

$$
\ulcorner\text { map }\urcorner:(\text { ref int } \rightarrow \text { ref int }) \rightarrow \text { list }(\text { int }+ \text { ref int }) \rightarrow \text { list }(\text { int }+ \text { ref int })
$$

$$
\begin{aligned}
& \operatorname{map} f e= \\
& \operatorname{case}_{\mathrm{L}} e \text { of } \\
& \mid[] \rightarrow[] \\
& \mid h:: t l \rightarrow f h:: \operatorname{map} f t l
\end{aligned}
$$

Running Example: map (translation II)

```
`map `: (ref int }->\mathrm{ ref int) }->\mathrm{ list (int +ref int) }->\mathrm{ list (int +ref int)
```

```
map}fe
    case}\mp@subsup{\textrm{L}}{2}{}e\mathrm{ of
    |[] 就
    | h::tl ->f h:: map f tl
```

$$
\begin{aligned}
& \ulcorner\operatorname{map}\urcorner f e= \\
& \operatorname{case}_{\mathrm{L}} e \text { of } \\
& \mid[] \rightarrow[] \\
& \mid h:: t l \rightarrow \\
& \quad \text { case } h \text { of } \\
& \mid h_{l} \rightarrow\left(\text { inl }!\left(f\left(\text { ref } h_{l}\right)\right)\right)::\ulcorner\operatorname{map}\urcorner f t l \\
& \mid h_{r} \rightarrow \operatorname{let} l=\text { ref }!\left(f h_{r}\right) \text { in } \\
& \quad \operatorname{let}()= \\
& \quad \operatorname{push}\left(l, \lambda() .!\left(f h_{r}\right)\right) \text { in }
\end{aligned}
$$

Running Example: map (translation II)

```
`map `: (ref int }->\mathrm{ ref int) }->\mathrm{ list (int +ref int) }->\mathrm{ list (int +ref int)
```

```
map}fe
    case}\mp@subsup{\textrm{L}}{2}{}e\mathrm{ of
    |[] 就
    | h::tl ->f h:: map f tl
```

$$
\begin{aligned}
& \ulcorner\operatorname{map}\urcorner f e= \\
& \operatorname{case}_{\mathrm{L}} e \text { of } \\
& \mid[] \rightarrow[] \\
& \mid h:: t l \rightarrow \\
& \text { case } h \text { of } \\
& \mid h_{l} \rightarrow\left(\text { inl }!\left(f\left(\text { ref } h_{l}\right)\right)\right)::\ulcorner\operatorname{map}\urcorner f t l \\
& \mid h_{r} \rightarrow \operatorname{let} l=\text { ref }!\left(f h_{r}\right) \text { in } \\
& \quad \operatorname{let}()= \\
& \quad \operatorname{push}\left(l, \lambda() .!\left(f h_{r}\right)\right) \text { in } \\
& \operatorname{inr} l::\ulcorner\operatorname{map}\urcorner f t l
\end{aligned}
$$

Translation

$$
\Delta ; \Phi ; \Gamma \vdash_{\epsilon}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner
$$

Translation

$$
\Delta ; \Phi ; \Gamma \vdash_{\epsilon}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner
$$

- The translation is defined by induction on the typing derivation

Translation

$$
\Delta ; \Phi ; \Gamma \vdash_{\epsilon}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner
$$

- The translation is defined by induction on the typing derivation
- Two modes: $\epsilon=\mathbb{C}$ and $\epsilon=\mathbb{S}$

Translation

$$
\Delta ; \Phi ; \Gamma \vdash_{\epsilon}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner
$$

- The translation is defined by induction on the typing derivation
- Two modes: $\epsilon=\mathbb{C}$ and $\epsilon=\mathbb{S}$
- The code generated in \mathbb{C} mode will be executed from scratch during CP

Translation

$$
\Delta ; \Phi ; \Gamma \vdash_{\epsilon}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner
$$

- The translation is defined by induction on the typing derivation
- Two modes: $\epsilon=\mathbb{C}$ and $\epsilon=\mathbb{S}$
- The code generated in \mathbb{C} mode will be executed from scratch during CP
- The code generated in \mathbb{S} mode is self-adjusting
- During this mode we record the computations that need to be re-executed during $C P$

Change Propagation

$$
Q, \sigma_{i}\left[\sigma_{c}\right] \rightsquigarrow \sigma_{f}, c
$$

Change Propagation

$$
Q, \sigma_{i}\left[\sigma_{c}\right] \rightsquigarrow \sigma_{f}, c
$$

- Q is the queue holding the recorded computations

Change Propagation

$$
Q, \sigma_{i}\left[\sigma_{c}\right] \rightsquigarrow \sigma_{f}, c
$$

- Q is the queue holding the recorded computations
- While Q is not empty, the algorithm:

Change Propagation

$$
Q, \sigma_{i}\left[\sigma_{c}\right] \rightsquigarrow \sigma_{f}, c
$$

- Q is the queue holding the recorded computations
- While Q is not empty, the algorithm:
- pops an element (\vec{l}, f) from the queue

Change Propagation

$$
Q, \sigma_{i}\left[\sigma_{c}\right] \rightsquigarrow \sigma_{f}, c
$$

- Q is the queue holding the recorded computations
- While Q is not empty, the algorithm:
- pops an element (\vec{l}, f) from the queue
- runs the computation $f()$ that returns the updated values of the locations and incurs cost c_{f}
- updates the locations with their new values and the total cost to $c \leftarrow c_{f}+c$

Change Propagation

$$
Q, \sigma_{i}\left[\sigma_{c}\right] \rightsquigarrow \sigma_{f}, c
$$

- Q is the queue holding the recorded computations
- While Q is not empty, the algorithm:
- pops an element (\vec{l}, f) from the queue
- runs the computation $f()$ that returns the updated values of the locations and incurs cost c_{f}
- updates the locations with their new values and the total cost to $c \leftarrow c_{f}+c$

Similarity Relation

$$
v_{s} \approx_{\sigma}^{\tau} v_{t}
$$

- v_{s} is the source value, v_{t} is the target value
- σ is the store in the target
- Changeable values are references in the target (stored in σ)
- For stable values, v_{s} and v_{t} should coincide
- For changeable values, v_{t} should be a location and v_{s} should coincide with the value of this location in the store.

$$
(3,42) \approx_{[l \mapsto 42]}^{\text {int }^{\mathbb{S}} \times \text { int }^{\mathbb{C}}}(3, l)
$$

Soundness, \mathbb{C} mode

Theorem

Assume that

$$
\vdash_{\mathbb{C}}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner
$$

Then there exist $v_{s}^{\prime}, v_{t}^{\prime}, \sigma^{\prime}, j$ and c, such that

Soundness, \mathbb{C} mode

Theorem

Assume that

$$
\vdash_{\mathbb{C}}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner
$$

Then there exist $v_{s}^{\prime}, v_{t}^{\prime}, \sigma^{\prime}, j$ and c, such that
(I) $e \Downarrow v_{s}^{\prime}, j$

Soundness, \mathbb{C} mode

Theorem

Assume that

$$
\vdash_{\mathbb{C}}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner
$$

Then there exist $v_{s}^{\prime}, v_{t}^{\prime}, \sigma^{\prime}, j$ and c, such that
(I) $e \Downarrow v_{s}^{\prime}, j$
(2) $\ulcorner e\urcorner, \sigma \Downarrow v_{t}^{\prime}, \sigma^{\prime}, \varnothing, c$

Soundness, \mathbb{C} mode

Theorem

Assume that

$$
\vdash_{\mathbb{C}}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner
$$

Then there exist $v_{s}^{\prime}, v_{t}^{\prime}, \sigma^{\prime}, j$ and c, such that
(I) $e \Downarrow v_{s}^{\prime}, j$
(2) $\ulcorner e\urcorner, \sigma \Downarrow v_{t}^{\prime}, \sigma^{\prime}, \varnothing, c$
(3) $\models c \dot{\leq} \kappa$

Soundness, \mathbb{C} mode

Theorem

Assume that

$$
\vdash_{\mathbb{C}}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner
$$

Then there exist $v_{s}^{\prime}, v_{t}^{\prime}, \sigma^{\prime}, j$ and c, such that
(I) $e \Downarrow v_{s}^{\prime}, j$
(2) $\ulcorner e\urcorner, \sigma \Downarrow v_{t}^{\prime}, \sigma^{\prime}, \varnothing, c$
(3) $\models c \dot{\leq} \kappa$
(4) $v_{s}^{\prime} \approx_{\sigma^{\prime}}^{\tau} v_{t}^{\prime}$

Two-way similarity relation

$$
\left(v_{i}, v_{c}\right) \approx_{\left(\sigma_{i}, \sigma_{c}\right)}^{\tau} v_{t}
$$

- v_{i} is the initial source value, v_{c} is the source value after changes
- v_{t} is the target value that stores changeable values in references
- σ_{i} is the initial target store, σ_{c} is the target store holding changed values
- For stable values, v_{i}, v_{c} and v_{t} should coincide under the two stores
- For changeable values, v_{i} should be similar to v_{t} under σ_{i} and v_{c} should be similar to v_{t} under σ_{c}

$$
((3,42),(3,43)) \approx_{[l \rightarrow 42],[l \mapsto 4]}^{\mathrm{int}^{\mathbb{S}} \times \mathrm{int}^{\mathbb{C}}}(3, l)
$$

Soundness, \mathbb{S} mode

Theorem

Assume that

$$
\begin{gathered}
; \cdot ; x: \tau^{\prime} \vdash_{\mathbb{S}}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner \\
\left(v_{i}, v_{c}\right) \approx_{\left(\sigma_{i}, \sigma_{c}\right)}^{\tau^{\prime}} v_{t}
\end{gathered}
$$

Then if $\left[x \mapsto v_{i}\right] e \Downarrow v_{i}^{\prime}, j$ then there exist $v_{c}^{\prime}, v_{t}^{\prime}, \sigma_{f}, \sigma_{f}^{\prime}, Q, j$ and c, such that

Soundness, \mathbb{S} mode

Theorem

Assume that

$$
\begin{gathered}
\cdot ; \cdot ; x: \tau^{\prime} \vdash_{\mathbb{S}}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner \\
\left(v_{i}, v_{c}\right) \approx_{\left(\sigma_{i}, \sigma_{c}\right)}^{\tau^{\prime}} v_{t}
\end{gathered}
$$

Then if $\left[x \mapsto v_{i}\right] e \Downarrow v_{i}^{\prime}, j$ then there exist $v_{c}^{\prime}, v_{t}^{\prime}, \sigma_{f}, \sigma_{f}^{\prime}, Q, j$ and c, such that
(I) $\left[x \mapsto v_{c}\right] e \Downarrow v_{c}^{\prime}, j^{\prime}$

Soundness, \mathbb{S} mode

Theorem

Assume that

$$
\begin{gathered}
\cdot ; \cdot ; x: \tau^{\prime} \vdash_{\mathbb{S}}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner \\
\left(v_{i}, v_{c}\right) \approx_{\left(\sigma_{i}, \sigma_{c}\right)}^{\tau^{\prime}} v_{t}
\end{gathered}
$$

Then if $\left[x \mapsto v_{i}\right] e \Downarrow v_{i}^{\prime}, j$ then there exist $v_{c}^{\prime}, v_{t}^{\prime}, \sigma_{f}, \sigma_{f}^{\prime}, Q, j$ and c, such that
(I) $\left[x \mapsto v_{c}\right] e \Downarrow v_{c}^{\prime}, j^{\prime}$
(2) $\left[x \mapsto v_{t}\right]\ulcorner e\urcorner, \sigma_{i} \Downarrow v_{t}^{\prime}, \sigma_{f}, Q, c$

Soundness, \mathbb{S} mode

Theorem

Assume that

$$
\begin{gathered}
\cdot ; \cdot ; x: \tau^{\prime} \vdash_{\mathbb{S}}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner \\
\left(v_{i}, v_{c}\right) \approx_{\left(\sigma_{i}, \sigma_{c}\right)}^{\tau^{\prime}} v_{t}
\end{gathered}
$$

Then if $\left[x \mapsto v_{i}\right] e \Downarrow v_{i}^{\prime}, j$ then there exist $v_{c}^{\prime}, v_{t}^{\prime}, \sigma_{f}, \sigma_{f}^{\prime}, Q, j$ and c, such that
(I) $\left[x \mapsto v_{c}\right] e \Downarrow v_{c}^{\prime}, j^{\prime}$
(2) $\left[x \mapsto v_{t}\right]\ulcorner e\urcorner, \sigma_{i} \Downarrow v_{t}^{\prime}, \sigma_{f}, Q, c$
(3) $Q, \sigma_{f}\left[\sigma_{c}\right] \rightsquigarrow \sigma_{f}^{\prime}, c^{\prime}$

Soundness, \mathbb{S} mode

Theorem

Assume that

$$
\begin{gathered}
\cdot ; \cdot ; x: \tau^{\prime} \vdash_{\mathbb{S}}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner \\
\left(v_{i}, v_{c}\right) \approx_{\left(\sigma_{i}, \sigma_{c}\right)}^{\tau^{\prime}} v_{t}
\end{gathered}
$$

Then if $\left[x \mapsto v_{i}\right] e \Downarrow v_{i}^{\prime}, j$ then there exist $v_{c}^{\prime}, v_{t}^{\prime}, \sigma_{f}, \sigma_{f}^{\prime}, Q, j$ and c, such that
(I) $\left[x \mapsto v_{c}\right] e \Downarrow v_{c}^{\prime}, j^{\prime}$
(2) $\left[x \mapsto v_{t}\right]\ulcorner e\urcorner, \sigma_{i} \Downarrow v_{t}^{\prime}, \sigma_{f}, Q, c$
(3) $Q, \sigma_{f}\left[\sigma_{c}\right] \rightsquigarrow \sigma_{f}^{\prime}, c^{\prime}$
(4) $\models c^{\prime} \dot{\leq} \kappa$

Soundness, \mathbb{S} mode

Theorem

Assume that

$$
\begin{gathered}
\cdot ; \cdot ; x: \tau^{\prime} \vdash_{\mathbb{S}}^{\kappa} e: \tau \hookrightarrow\ulcorner e\urcorner \\
\left(v_{i}, v_{c}\right) \approx_{\left(\sigma_{i}, \sigma_{c}\right)}^{\tau^{\prime}} v_{t}
\end{gathered}
$$

Then if $\left[x \mapsto v_{i}\right] e \Downarrow v_{i}^{\prime}, j$ then there exist $v_{c}^{\prime}, v_{t}^{\prime}, \sigma_{f}, \sigma_{f}^{\prime}, Q, j$ and c, such that
(I) $\left[x \mapsto v_{c}\right] e \Downarrow v_{c}^{\prime}, j^{\prime}$
(2) $\left[x \mapsto v_{t}\right]\ulcorner e\urcorner, \sigma_{i} \Downarrow v_{t}^{\prime}, \sigma_{f}, Q, c$
(3) $Q, \sigma_{f}\left[\sigma_{c}\right] \rightsquigarrow \sigma_{f}^{\prime}, c^{\prime}$
(4) $\models c^{\prime} \leq \kappa$
(5) $\left(v_{i}^{\prime}, v_{c}^{\prime}\right) \approx_{\left(\sigma_{f}, \sigma_{f}^{\prime}\right)} v_{t}^{\prime}$

Proof Method

- The soundness is proved using logical relations
- We construct two Kripke step-indexed relational models
- Two fundamental properties, one for each typing mode
- The soundness theorems are corollaries of the fundamental properties of the logical relations

Summary

- Soundness proof for Costlt w.r.t. to concrete CP semantics
- Older poof was w.r.t. an abstract semantics
- Designed a target language (saML) with infrastructure for CP
- Translated Costlt to saML
- Proved the correctness of the translation and the change propagation mechanism
- Proved that the cost derived by Costlt is a sound approximation of the actual cost (for both \mathbb{C} and \mathbb{S} modes)

Future Work

- Devise a more efficient CP mechanism
- Mechanize the proof using a proof assistant
- Adapt Costlt to derive the cost for demand-driven self-adjusting computation
- Ongoing work: Implementation of the type system using bidirectional type checking (E. Çiçek and D. Garg)

Thank You!
 Questions?

