
Implicit self-adjusting computation for CostIt
Internship Defense

Zoe Paraskevopoulou1,2

Advisor: Deepak Garg2

1ENS Cachan 2Max Planck Institute for Software Systems

September 8, 2015

1 / 20



Self Adjusting Computation

• An evaluation mechanism that recomputes only the parts of the
output that depend on inputs that have changed between runs

• Change propagation (CP) : the process of updating the parts of
the output that depend on changed data

• Implicit self-adjusting computation: The program responds
automatically to changes in its inputs without any manual effort
from the programmer

• Often results in asymptotic speedup

2 / 20



Change Propagation by Example

42

17

8

2 4

9

5 4

25

5

10 5

5

3 2

+

+

∗ +

∗

− +

3 / 20



Change Propagation by Example

42

17

8

2 4

9

6 4

25

5

10 5

5

3 2

+

+

∗ +

∗

− +

3 / 20



Change Propagation by Example

42

17

8

2 4

10

6 4

25

5

10 5

5

3 2

+

+

∗ +

∗

− +

3 / 20



Change Propagation by Example

42

18

8

2 4

10

6 4

25

5

10 5

5

3 2

+

+

∗ +

∗

− +

3 / 20



Change Propagation by Example

43

18

8

2 4

10

6 4

25

5

10 5

5

3 2

+

+

∗ +

∗

− +

3 / 20



CostIt (I)

• A type and effect system that allows us to derive upper bounds
on the cost of incremental computation

• Judgments: ∆; Φ; Γ ⊢κ
ϵ e : τ

♦ ϵ is the typing mode (S or C)
♦ κ is the derived cost

• When ϵ = S then κ is the upper bound of CP
• When ϵ = C then κ is the worst case execution cost

4 / 20



CostIt (I)

• A type and effect system that allows us to derive upper bounds
on the cost of incremental computation

• Judgments: ∆; Φ; Γ ⊢κ
ϵ e : τ

♦ ϵ is the typing mode (S or C)
♦ κ is the derived cost

• When ϵ = S then κ is the upper bound of CP
• When ϵ = C then κ is the worst case execution cost

4 / 20



CostIt (I)

• A type and effect system that allows us to derive upper bounds
on the cost of incremental computation

• Judgments: ∆; Φ; Γ ⊢κ
ϵ e : τ

♦ ϵ is the typing mode (S or C)
♦ κ is the derived cost

• When ϵ = S then κ is the upper bound of CP

• When ϵ = C then κ is the worst case execution cost

4 / 20



CostIt (I)

• A type and effect system that allows us to derive upper bounds
on the cost of incremental computation

• Judgments: ∆; Φ; Γ ⊢κ
ϵ e : τ

♦ ϵ is the typing mode (S or C)
♦ κ is the derived cost

• When ϵ = S then κ is the upper bound of CP
• When ϵ = C then κ is the worst case execution cost

4 / 20



CostIt (II)

• Functions are annotated with effects τ1
µ(κ)−−−→ τ2

♦ When µ = S then the result of the function application can be
updated with CP with cost ≤ κ

♦ When µ = C then the the function application is evaluated
from-scratch with cost ≤ κ

• Types have changeability annotations τµ

♦ τS : a value that cannot change between runs
♦ τC : a value that can change between runs
♦ τ□ : a value that cannot change between nor capture other

changeable values

• Index refinement types (in the style of DML)
• Lists : list [n]α τ

♦ A vector of n elements from which at most α can change

5 / 20



CostIt (II)

• Functions are annotated with effects τ1
µ(κ)−−−→ τ2

♦ When µ = S then the result of the function application can be
updated with CP with cost ≤ κ

♦ When µ = C then the the function application is evaluated
from-scratch with cost ≤ κ

• Types have changeability annotations τµ

♦ τS : a value that cannot change between runs
♦ τC : a value that can change between runs
♦ τ□ : a value that cannot change between nor capture other

changeable values

• Index refinement types (in the style of DML)
• Lists : list [n]α τ

♦ A vector of n elements from which at most α can change

5 / 20



CostIt (II)

• Functions are annotated with effects τ1
µ(κ)−−−→ τ2

♦ When µ = S then the result of the function application can be
updated with CP with cost ≤ κ

♦ When µ = C then the the function application is evaluated
from-scratch with cost ≤ κ

• Types have changeability annotations τµ

♦ τS : a value that cannot change between runs
♦ τC : a value that can change between runs
♦ τ□ : a value that cannot change between nor capture other

changeable values

• Index refinement types (in the style of DML)
• Lists : list [n]α τ

♦ A vector of n elements from which at most α can change

5 / 20



CostIt (II)

• Functions are annotated with effects τ1
µ(κ)−−−→ τ2

♦ When µ = S then the result of the function application can be
updated with CP with cost ≤ κ

♦ When µ = C then the the function application is evaluated
from-scratch with cost ≤ κ

• Types have changeability annotations τµ

♦ τS : a value that cannot change between runs
♦ τC : a value that can change between runs
♦ τ□ : a value that cannot change between nor capture other

changeable values

• Index refinement types (in the style of DML)
• Lists : list [n]α τ

♦ A vector of n elements from which at most α can change

5 / 20



CostIt (II)

• Functions are annotated with effects τ1
µ(κ)−−−→ τ2

♦ When µ = S then the result of the function application can be
updated with CP with cost ≤ κ

♦ When µ = C then the the function application is evaluated
from-scratch with cost ≤ κ

• Types have changeability annotations τµ

♦ τS : a value that cannot change between runs
♦ τC : a value that can change between runs
♦ τ□ : a value that cannot change between nor capture other

changeable values

• Index refinement types (in the style of DML)

• Lists : list [n]α τ
♦ A vector of n elements from which at most α can change

5 / 20



CostIt (II)

• Functions are annotated with effects τ1
µ(κ)−−−→ τ2

♦ When µ = S then the result of the function application can be
updated with CP with cost ≤ κ

♦ When µ = C then the the function application is evaluated
from-scratch with cost ≤ κ

• Types have changeability annotations τµ

♦ τS : a value that cannot change between runs
♦ τC : a value that can change between runs
♦ τ□ : a value that cannot change between nor capture other

changeable values

• Index refinement types (in the style of DML)
• Lists : list [n]α τ

♦ A vector of n elements from which at most α can change

5 / 20



Running Example: map (typing)

map : (τ1
C(κ)−−−→ τ2)□ S(0)−−→ list [n]α τ1

S(κ·α)−−−−→ list [n]α τ2

• If f executes from-scratch with cost k and l has n elements of
which at most α can change then map f l propagates changes
with cost at most α · κ

• Intuition: we need to recompute and update in place only the
elements of the list that can change

6 / 20



Running Example: map (typing)

map : (τ1
C(κ)−−−→ τ2)□ S(0)−−→ list [n]α τ1

S(κ·α)−−−−→ list [n]α τ2

• If f executes from-scratch with cost k and l has n elements of
which at most α can change then map f l propagates changes
with cost at most α · κ

• Intuition: we need to recompute and update in place only the
elements of the list that can change

6 / 20



Soundness (this internship)

• Idea: Translate a CostIt program to a self-adjusting program
and show that the actual cost is no more that the cost derived
by the type system

⊢κ
ϵ e : τ v1

≈

⊢ ⌜e⌝ : ∥τ∥ v2

evaluates to

evaluates in c steps to

if ϵ = C then c ≤ κ

translates to

(a) First run

⊢κ
S e : τ v1

≈

⊢ ⌜e⌝ : ∥τ∥ v2

evaluates to

CP in c steps to

c ≤ κ

translates to

(b) Incremental run after input changes

Figure: Schematic representation of the basic properties of the translation

7 / 20



Target Language: saML

• A simply typed lambda calculus with general references

• The runtime is modified to keep track of the computations that
need to be re-executed during CP

♦ We maintain a global queue that holds closures that are pushed
during the first run

♦ We add new primitives: push, empty
♦ We push tuples of the form (⃗l, f), where l⃗ is the list of locations

that need to be updated and f the closure that computes their
new values

♦ During the incremental run the computations are popped and
executed with a FIFO order

8 / 20



Target Language: saML

• A simply typed lambda calculus with general references
• The runtime is modified to keep track of the computations that
need to be re-executed during CP

♦ We maintain a global queue that holds closures that are pushed
during the first run

♦ We add new primitives: push, empty
♦ We push tuples of the form (⃗l, f), where l⃗ is the list of locations

that need to be updated and f the closure that computes their
new values

♦ During the incremental run the computations are popped and
executed with a FIFO order

8 / 20



Target Language: saML

• A simply typed lambda calculus with general references
• The runtime is modified to keep track of the computations that
need to be re-executed during CP

♦ We maintain a global queue that holds closures that are pushed
during the first run

♦ We add new primitives: push, empty
♦ We push tuples of the form (⃗l, f), where l⃗ is the list of locations

that need to be updated and f the closure that computes their
new values

♦ During the incremental run the computations are popped and
executed with a FIFO order

8 / 20



Target Language: saML

• A simply typed lambda calculus with general references
• The runtime is modified to keep track of the computations that
need to be re-executed during CP

♦ We maintain a global queue that holds closures that are pushed
during the first run

♦ We add new primitives: push, empty

♦ We push tuples of the form (⃗l, f), where l⃗ is the list of locations
that need to be updated and f the closure that computes their
new values

♦ During the incremental run the computations are popped and
executed with a FIFO order

8 / 20



Target Language: saML

• A simply typed lambda calculus with general references
• The runtime is modified to keep track of the computations that
need to be re-executed during CP

♦ We maintain a global queue that holds closures that are pushed
during the first run

♦ We add new primitives: push, empty
♦ We push tuples of the form (⃗l, f), where l⃗ is the list of locations

that need to be updated and f the closure that computes their
new values

♦ During the incremental run the computations are popped and
executed with a FIFO order

8 / 20



Target Language: saML

• A simply typed lambda calculus with general references
• The runtime is modified to keep track of the computations that
need to be re-executed during CP

♦ We maintain a global queue that holds closures that are pushed
during the first run

♦ We add new primitives: push, empty
♦ We push tuples of the form (⃗l, f), where l⃗ is the list of locations

that need to be updated and f the closure that computes their
new values

♦ During the incremental run the computations are popped and
executed with a FIFO order

8 / 20



Target Language: saML

• A simply typed lambda calculus with general references
• The runtime is modified to keep track of the computations that
need to be re-executed during CP

♦ We maintain a global queue that holds closures that are pushed
during the first run

♦ We add new primitives: push, empty
♦ We push tuples of the form (⃗l, f), where l⃗ is the list of locations

that need to be updated and f the closure that computes their
new values

♦ During the incremental run the computations are popped and
executed with a FIFO order

8 / 20



Running Example: map (translation I)

map : (intC C(κ)−−−→ intC)□ S(0)−−→ list [n]α intC S(κ·α)−−−−→ list [n]α intC

• Re-apply the argument function only to the elements that have
changed and update the output list in-place

• Store changeable values in reference cells : ∥AC∥ = ref ∥A∥
• Differentiate between stable and changeable values of a list :
∥list [n]α intC∥ = list (int + ref int)

⌜map⌝ : (ref int −→ ref int) −→ list (int+ref int) −→ list (int+ref int)

9 / 20



Running Example: map (translation I)

map : (intC C(κ)−−−→ intC)□ S(0)−−→ list [n]α intC S(κ·α)−−−−→ list [n]α intC

• Re-apply the argument function only to the elements that have
changed and update the output list in-place

• Store changeable values in reference cells : ∥AC∥ = ref ∥A∥

• Differentiate between stable and changeable values of a list :
∥list [n]α intC∥ = list (int + ref int)

⌜map⌝ : (ref int −→ ref int) −→ list (int+ref int) −→ list (int+ref int)

9 / 20



Running Example: map (translation I)

map : (intC C(κ)−−−→ intC)□ S(0)−−→ list [n]α intC S(κ·α)−−−−→ list [n]α intC

• Re-apply the argument function only to the elements that have
changed and update the output list in-place

• Store changeable values in reference cells : ∥AC∥ = ref ∥A∥
• Differentiate between stable and changeable values of a list :
∥list [n]α intC∥ = list (int + ref int)

⌜map⌝ : (ref int −→ ref int) −→ list (int+ref int) −→ list (int+ref int)

9 / 20



Running Example: map (translation I)

map : (intC C(κ)−−−→ intC)□ S(0)−−→ list [n]α intC S(κ·α)−−−−→ list [n]α intC

• Re-apply the argument function only to the elements that have
changed and update the output list in-place

• Store changeable values in reference cells : ∥AC∥ = ref ∥A∥
• Differentiate between stable and changeable values of a list :
∥list [n]α intC∥ = list (int + ref int)

⌜map⌝ : (ref int −→ ref int) −→ list (int+ref int) −→ list (int+ref int)

9 / 20



Running Example: map (translation II)

⌜map⌝ : (ref int −→ ref int) −→ list (int+ref int) −→ list (int+ref int)

map f e =
caseL e of
| [] → []
| h :: tl → f h :: map f tl

⌜map⌝ f e =
caseL e of
| [] →

[]

| h :: tl →

case h of
| hl →

(inl !(f (ref hl))) :: ⌜map⌝ f tl

| hr →

let l = ref !(f hr) in
let () =
push(l, λ(). !(f hr)) in

inr l :: ⌜map⌝ f tl

10 / 20



Running Example: map (translation II)

⌜map⌝ : (ref int −→ ref int) −→ list (int+ref int) −→ list (int+ref int)

map f e =
caseL e of
| [] → []
| h :: tl → f h :: map f tl

⌜map⌝ f e =
caseL e of
| [] → []
| h :: tl →

case h of
| hl →

(inl !(f (ref hl))) :: ⌜map⌝ f tl

| hr →

let l = ref !(f hr) in
let () =
push(l, λ(). !(f hr)) in

inr l :: ⌜map⌝ f tl

10 / 20



Running Example: map (translation II)

⌜map⌝ : (ref int −→ ref int) −→ list (int+ref int) −→ list (int+ref int)

map f e =
caseL e of
| [] → []
| h :: tl → f h :: map f tl

⌜map⌝ f e =
caseL e of
| [] → []
| h :: tl →
case h of
| hl →

(inl !(f (ref hl))) :: ⌜map⌝ f tl

| hr →

let l = ref !(f hr) in
let () =
push(l, λ(). !(f hr)) in

inr l :: ⌜map⌝ f tl

10 / 20



Running Example: map (translation II)

⌜map⌝ : (ref int −→ ref int) −→ list (int+ref int) −→ list (int+ref int)

map f e =
caseL e of
| [] → []
| h :: tl → f h :: map f tl

⌜map⌝ f e =
caseL e of
| [] → []
| h :: tl →
case h of
| hl → (inl !(f (ref hl))) :: ⌜map⌝ f tl
| hr →

let l = ref !(f hr) in
let () =
push(l, λ(). !(f hr)) in

inr l :: ⌜map⌝ f tl

10 / 20



Running Example: map (translation II)

⌜map⌝ : (ref int −→ ref int) −→ list (int+ref int) −→ list (int+ref int)

map f e =
caseL e of
| [] → []
| h :: tl → f h :: map f tl

⌜map⌝ f e =
caseL e of
| [] → []
| h :: tl →
case h of
| hl → (inl !(f (ref hl))) :: ⌜map⌝ f tl
| hr → let l = ref !(f hr) in

let () =
push(l, λ(). !(f hr)) in

inr l :: ⌜map⌝ f tl

10 / 20



Running Example: map (translation II)

⌜map⌝ : (ref int −→ ref int) −→ list (int+ref int) −→ list (int+ref int)

map f e =
caseL e of
| [] → []
| h :: tl → f h :: map f tl

⌜map⌝ f e =
caseL e of
| [] → []
| h :: tl →
case h of
| hl → (inl !(f (ref hl))) :: ⌜map⌝ f tl
| hr → let l = ref !(f hr) in

let () =
push(l, λ(). !(f hr)) in

inr l :: ⌜map⌝ f tl

10 / 20



Running Example: map (translation II)

⌜map⌝ : (ref int −→ ref int) −→ list (int+ref int) −→ list (int+ref int)

map f e =
caseL e of
| [] → []
| h :: tl → f h :: map f tl

⌜map⌝ f e =
caseL e of
| [] → []
| h :: tl →
case h of
| hl → (inl !(f (ref hl))) :: ⌜map⌝ f tl
| hr → let l = ref !(f hr) in

let () =
push(l, λ(). !(f hr)) in

inr l :: ⌜map⌝ f tl

10 / 20



Translation

∆; Φ; Γ ⊢κ
ϵ e : τ ↪→ ⌜e⌝

• The translation is defined by induction on the typing derivation
• Two modes: ϵ = C and ϵ = S
• The code generated in C mode will be executed from scratch
during CP

• The code generated in S mode is self-adjusting
♦ During this mode we record the computations that need to be

re-executed during CP

11 / 20



Translation

∆; Φ; Γ ⊢κ
ϵ e : τ ↪→ ⌜e⌝

• The translation is defined by induction on the typing derivation

• Two modes: ϵ = C and ϵ = S
• The code generated in C mode will be executed from scratch
during CP

• The code generated in S mode is self-adjusting
♦ During this mode we record the computations that need to be

re-executed during CP

11 / 20



Translation

∆; Φ; Γ ⊢κ
ϵ e : τ ↪→ ⌜e⌝

• The translation is defined by induction on the typing derivation
• Two modes: ϵ = C and ϵ = S

• The code generated in C mode will be executed from scratch
during CP

• The code generated in S mode is self-adjusting
♦ During this mode we record the computations that need to be

re-executed during CP

11 / 20



Translation

∆; Φ; Γ ⊢κ
ϵ e : τ ↪→ ⌜e⌝

• The translation is defined by induction on the typing derivation
• Two modes: ϵ = C and ϵ = S
• The code generated in C mode will be executed from scratch
during CP

• The code generated in S mode is self-adjusting
♦ During this mode we record the computations that need to be

re-executed during CP

11 / 20



Translation

∆; Φ; Γ ⊢κ
ϵ e : τ ↪→ ⌜e⌝

• The translation is defined by induction on the typing derivation
• Two modes: ϵ = C and ϵ = S
• The code generated in C mode will be executed from scratch
during CP

• The code generated in S mode is self-adjusting
♦ During this mode we record the computations that need to be

re-executed during CP

11 / 20



Change Propagation

Q, σi[σc]⇝ σf , c

• Q is the queue holding the recorded computations
• While Q is not empty, the algorithm:

♦ pops an element (⃗l, f) from the queue
♦ runs the computation f () that returns the updated values of the

locations and incurs cost cf

♦ updates the locations with their new values and the total cost to
c← cf + c

12 / 20



Change Propagation

Q, σi[σc]⇝ σf , c

• Q is the queue holding the recorded computations

• While Q is not empty, the algorithm:
♦ pops an element (⃗l, f) from the queue
♦ runs the computation f () that returns the updated values of the

locations and incurs cost cf

♦ updates the locations with their new values and the total cost to
c← cf + c

12 / 20



Change Propagation

Q, σi[σc]⇝ σf , c

• Q is the queue holding the recorded computations
• While Q is not empty, the algorithm:

♦ pops an element (⃗l, f) from the queue
♦ runs the computation f () that returns the updated values of the

locations and incurs cost cf

♦ updates the locations with their new values and the total cost to
c← cf + c

12 / 20



Change Propagation

Q, σi[σc]⇝ σf , c

• Q is the queue holding the recorded computations
• While Q is not empty, the algorithm:

♦ pops an element (⃗l, f) from the queue

♦ runs the computation f () that returns the updated values of the
locations and incurs cost cf

♦ updates the locations with their new values and the total cost to
c← cf + c

12 / 20



Change Propagation

Q, σi[σc]⇝ σf , c

• Q is the queue holding the recorded computations
• While Q is not empty, the algorithm:

♦ pops an element (⃗l, f) from the queue
♦ runs the computation f () that returns the updated values of the

locations and incurs cost cf

♦ updates the locations with their new values and the total cost to
c← cf + c

12 / 20



Change Propagation

Q, σi[σc]⇝ σf , c

• Q is the queue holding the recorded computations
• While Q is not empty, the algorithm:

♦ pops an element (⃗l, f) from the queue
♦ runs the computation f () that returns the updated values of the

locations and incurs cost cf

♦ updates the locations with their new values and the total cost to
c← cf + c

12 / 20



Similarity Relation

vs ≈τ
σ vt

• vs is the source value, vt is the target value
• σ is the store in the target
• Changeable values are references in the target (stored in σ)
• For stable values, vs and vt should coincide
• For changeable values, vt should be a location and vs should
coincide with the value of this location in the store.

(3, 42) ≈intS×intC
[l 7→42] (3, l)

13 / 20



Soundness, C mode

Theorem
Assume that

⊢κ
C e : τ ↪→ ⌜e⌝

Then there exist v′
s, v′

t, σ′, j and c, such that

(1) e ⇓ v′
s, j

(2) ⌜e⌝, σ ⇓ v′
t, σ′, ∅, c

(3) |= c ≤̇ κ

(4) v′
s ≈τ

σ′ v′
t

14 / 20



Soundness, C mode

Theorem
Assume that

⊢κ
C e : τ ↪→ ⌜e⌝

Then there exist v′
s, v′

t, σ′, j and c, such that

(1) e ⇓ v′
s, j

(2) ⌜e⌝, σ ⇓ v′
t, σ′, ∅, c

(3) |= c ≤̇ κ

(4) v′
s ≈τ

σ′ v′
t

14 / 20



Soundness, C mode

Theorem
Assume that

⊢κ
C e : τ ↪→ ⌜e⌝

Then there exist v′
s, v′

t, σ′, j and c, such that

(1) e ⇓ v′
s, j

(2) ⌜e⌝, σ ⇓ v′
t, σ′, ∅, c

(3) |= c ≤̇ κ

(4) v′
s ≈τ

σ′ v′
t

14 / 20



Soundness, C mode

Theorem
Assume that

⊢κ
C e : τ ↪→ ⌜e⌝

Then there exist v′
s, v′

t, σ′, j and c, such that

(1) e ⇓ v′
s, j

(2) ⌜e⌝, σ ⇓ v′
t, σ′, ∅, c

(3) |= c ≤̇ κ

(4) v′
s ≈τ

σ′ v′
t

14 / 20



Soundness, C mode

Theorem
Assume that

⊢κ
C e : τ ↪→ ⌜e⌝

Then there exist v′
s, v′

t, σ′, j and c, such that

(1) e ⇓ v′
s, j

(2) ⌜e⌝, σ ⇓ v′
t, σ′, ∅, c

(3) |= c ≤̇ κ

(4) v′
s ≈τ

σ′ v′
t

14 / 20



Two-way similarity relation

(vi, vc) ≈τ
(σi, σc) vt

• vi is the initial source value, vc is the source value after changes
• vt is the target value that stores changeable values in references
• σi is the initial target store, σc is the target store holding
changed values

• For stable values, vi, vc and vt should coincide under the two
stores

• For changeable values, vi should be similar to vt under σi and vc

should be similar to vt under σc

((3, 42), (3, 43)) ≈intS×intC
[l 7→42], [l 7→43] (3, l)

15 / 20



Soundness, S mode

Theorem
Assume that

·; ·; x : τ ′ ⊢κ
S e : τ ↪→ ⌜e⌝

(vi, vc) ≈τ ′

(σi, σc) vt

Then if [x 7→ vi]e ⇓ v′
i, j then there exist v′

c, v′
t, σf , σ′

f , Q, j and c,
such that

(1) [x 7→ vc]e ⇓ v′
c, j′

(2) [x 7→ vt]⌜e⌝, σi ⇓ v′
t, σf , Q, c

(3) Q, σf [σc]⇝ σ′
f , c′

(4) |= c′ ≤̇ κ

(5) (v′
i, v′

c) ≈(σf , σ′
f

) v′
t

16 / 20



Soundness, S mode

Theorem
Assume that

·; ·; x : τ ′ ⊢κ
S e : τ ↪→ ⌜e⌝

(vi, vc) ≈τ ′

(σi, σc) vt

Then if [x 7→ vi]e ⇓ v′
i, j then there exist v′

c, v′
t, σf , σ′

f , Q, j and c,
such that

(1) [x 7→ vc]e ⇓ v′
c, j′

(2) [x 7→ vt]⌜e⌝, σi ⇓ v′
t, σf , Q, c

(3) Q, σf [σc]⇝ σ′
f , c′

(4) |= c′ ≤̇ κ

(5) (v′
i, v′

c) ≈(σf , σ′
f

) v′
t

16 / 20



Soundness, S mode

Theorem
Assume that

·; ·; x : τ ′ ⊢κ
S e : τ ↪→ ⌜e⌝

(vi, vc) ≈τ ′

(σi, σc) vt

Then if [x 7→ vi]e ⇓ v′
i, j then there exist v′

c, v′
t, σf , σ′

f , Q, j and c,
such that

(1) [x 7→ vc]e ⇓ v′
c, j′

(2) [x 7→ vt]⌜e⌝, σi ⇓ v′
t, σf , Q, c

(3) Q, σf [σc]⇝ σ′
f , c′

(4) |= c′ ≤̇ κ

(5) (v′
i, v′

c) ≈(σf , σ′
f

) v′
t

16 / 20



Soundness, S mode

Theorem
Assume that

·; ·; x : τ ′ ⊢κ
S e : τ ↪→ ⌜e⌝

(vi, vc) ≈τ ′

(σi, σc) vt

Then if [x 7→ vi]e ⇓ v′
i, j then there exist v′

c, v′
t, σf , σ′

f , Q, j and c,
such that

(1) [x 7→ vc]e ⇓ v′
c, j′

(2) [x 7→ vt]⌜e⌝, σi ⇓ v′
t, σf , Q, c

(3) Q, σf [σc]⇝ σ′
f , c′

(4) |= c′ ≤̇ κ

(5) (v′
i, v′

c) ≈(σf , σ′
f

) v′
t

16 / 20



Soundness, S mode

Theorem
Assume that

·; ·; x : τ ′ ⊢κ
S e : τ ↪→ ⌜e⌝

(vi, vc) ≈τ ′

(σi, σc) vt

Then if [x 7→ vi]e ⇓ v′
i, j then there exist v′

c, v′
t, σf , σ′

f , Q, j and c,
such that

(1) [x 7→ vc]e ⇓ v′
c, j′

(2) [x 7→ vt]⌜e⌝, σi ⇓ v′
t, σf , Q, c

(3) Q, σf [σc]⇝ σ′
f , c′

(4) |= c′ ≤̇ κ

(5) (v′
i, v′

c) ≈(σf , σ′
f

) v′
t

16 / 20



Soundness, S mode

Theorem
Assume that

·; ·; x : τ ′ ⊢κ
S e : τ ↪→ ⌜e⌝

(vi, vc) ≈τ ′

(σi, σc) vt

Then if [x 7→ vi]e ⇓ v′
i, j then there exist v′

c, v′
t, σf , σ′

f , Q, j and c,
such that

(1) [x 7→ vc]e ⇓ v′
c, j′

(2) [x 7→ vt]⌜e⌝, σi ⇓ v′
t, σf , Q, c

(3) Q, σf [σc]⇝ σ′
f , c′

(4) |= c′ ≤̇ κ

(5) (v′
i, v′

c) ≈(σf , σ′
f

) v′
t

16 / 20



Proof Method

• The soundness is proved using logical relations
• We construct two Kripke step-indexed relational models
• Two fundamental properties, one for each typing mode
• The soundness theorems are corollaries of the fundamental
properties of the logical relations

17 / 20



Summary

• Soundness proof for CostIt w.r.t. to concrete CP semantics
♦ Older poof was w.r.t. an abstract semantics

• Designed a target language (saML) with infrastructure for CP
• Translated CostIt to saML
• Proved the correctness of the translation and the change
propagation mechanism

• Proved that the cost derived by CostIt is a sound approximation
of the actual cost (for both C and S modes)

18 / 20



Future Work

• Devise a more efficient CP mechanism
• Mechanize the proof using a proof assistant
• Adapt CostIt to derive the cost for demand-driven self-adjusting
computation

• Ongoing work: Implementation of the type system using
bidirectional type checking (E. Çiçek and D. Garg)

19 / 20



Thank You!
Questions?

20 / 20


