
Foundational Property Based Testing
ITP, Nanjing 2015

Zoe Paraskevopoulou1,2 Cătălin Hriţcu1 Maxime Dénès1

Leonidas Lampropoulos3 Benjamin C. Pierce3

1Inria Paris-Rocquencourt 2ENS Cachan 3University of Pennsylvania

August 27, 2015

1 / 22

Testing and Proving

• Proving
♦ very expensive, hard
♦ strong guarantees

• Testing
♦ fast, easy
♦ weak guarantees

• Testing helps proving!
♦ Decreases the cost of formal proofs
♦ Many successful projects that integrate testing into a proof

assistant (Isabelle/HOL, Adga/Alfa, ...)
♦ QuickChic for Coq

• Can proving help testing?

2 / 22

Testing and Proving

• Proving
♦ very expensive, hard
♦ strong guarantees

• Testing
♦ fast, easy
♦ weak guarantees

• Testing helps proving!
♦ Decreases the cost of formal proofs
♦ Many successful projects that integrate testing into a proof

assistant (Isabelle/HOL, Adga/Alfa, ...)
♦ QuickChic for Coq

• Can proving help testing?

2 / 22

Testing and Proving

• Proving
♦ very expensive, hard
♦ strong guarantees

• Testing
♦ fast, easy
♦ weak guarantees

• Testing helps proving!
♦ Decreases the cost of formal proofs
♦ Many successful projects that integrate testing into a proof

assistant (Isabelle/HOL, Adga/Alfa, ...)
♦ QuickChic for Coq

• Can proving help testing?

2 / 22

Testing and Proving

• Proving
♦ very expensive, hard
♦ strong guarantees

• Testing
♦ fast, easy
♦ weak guarantees

• Testing helps proving!
♦ Decreases the cost of formal proofs
♦ Many successful projects that integrate testing into a proof

assistant (Isabelle/HOL, Adga/Alfa, ...)
♦ QuickChic for Coq

• Can proving help testing?

2 / 22

Foundational property based testing framework

• Formally verify testing infrastucture
• Does it correspond to the desired property?
• Our framework builts on top of QuickChick, our PTB tool for
Coq

3 / 22

Property Based Testing

• Allows to test code in terms of functional correctness by
generating a large number of randomly generated inputs

• High level of automation

• The user has to write:
♦ Generators

▶ Random generation of input data
♦ Checkers

▶ programs that test the desired specification

4 / 22

Property Based Testing

• Allows to test code in terms of functional correctness by
generating a large number of randomly generated inputs

• High level of automation
• The user has to write:

♦ Generators
▶ Random generation of input data

♦ Checkers
▶ programs that test the desired specification

4 / 22

Property Based Testing

• Allows to test code in terms of functional correctness by
generating a large number of randomly generated inputs

• High level of automation
• The user has to write:

♦ Generators
▶ Random generation of input data

♦ Checkers
▶ programs that test the desired specification

4 / 22

Property Based Testing

• Allows to test code in terms of functional correctness by
generating a large number of randomly generated inputs

• High level of automation
• The user has to write:

♦ Generators
▶ Random generation of input data

♦ Checkers
▶ programs that test the desired specification

4 / 22

QuickChick

• Property based testing for Coq (port of Haskell's QuickCheck)
• Implemented in Coq
• It relies on extraction to OCaml for efficient execution
• Low level random generation primitives are implemented in
OCaml

• Provides a library of combinators that are used to construct
Generators and Checkers

5 / 22

Contributions

• Testing framework: QuickChick

• Verification framework
♦ We give semantics to both generators and checkers
♦ Generators

▶ Prove them sound and complete w.r.t to specifications
▶ Abstraction: reason about their set of outcomes
▶ Avoid probabilistic reasoning
▶ The idea of verified generators dates back to Dybjer et al. 1

♦ Checkers
▶ Prove that they correspond to the right logical proposition

♦ We give specifications to QuickChick combinators and prove
them correct w.r.t them

▶ verify the testing tool itself
▶ facilitate reasoning about combinators and checkers

♦ Case studies: Red-black trees (next), testing noninterference

1P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6 / 22

Contributions

• Testing framework: QuickChick
• Verification framework

♦ We give semantics to both generators and checkers
♦ Generators

▶ Prove them sound and complete w.r.t to specifications
▶ Abstraction: reason about their set of outcomes
▶ Avoid probabilistic reasoning
▶ The idea of verified generators dates back to Dybjer et al. 1

♦ Checkers
▶ Prove that they correspond to the right logical proposition

♦ We give specifications to QuickChick combinators and prove
them correct w.r.t them

▶ verify the testing tool itself
▶ facilitate reasoning about combinators and checkers

♦ Case studies: Red-black trees (next), testing noninterference

1P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6 / 22

Contributions

• Testing framework: QuickChick
• Verification framework

♦ We give semantics to both generators and checkers

♦ Generators
▶ Prove them sound and complete w.r.t to specifications
▶ Abstraction: reason about their set of outcomes
▶ Avoid probabilistic reasoning
▶ The idea of verified generators dates back to Dybjer et al. 1

♦ Checkers
▶ Prove that they correspond to the right logical proposition

♦ We give specifications to QuickChick combinators and prove
them correct w.r.t them

▶ verify the testing tool itself
▶ facilitate reasoning about combinators and checkers

♦ Case studies: Red-black trees (next), testing noninterference

1P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6 / 22

Contributions

• Testing framework: QuickChick
• Verification framework

♦ We give semantics to both generators and checkers
♦ Generators

▶ Prove them sound and complete w.r.t to specifications
▶ Abstraction: reason about their set of outcomes
▶ Avoid probabilistic reasoning
▶ The idea of verified generators dates back to Dybjer et al. 1

♦ Checkers
▶ Prove that they correspond to the right logical proposition

♦ We give specifications to QuickChick combinators and prove
them correct w.r.t them

▶ verify the testing tool itself
▶ facilitate reasoning about combinators and checkers

♦ Case studies: Red-black trees (next), testing noninterference

1P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6 / 22

Contributions

• Testing framework: QuickChick
• Verification framework

♦ We give semantics to both generators and checkers
♦ Generators

▶ Prove them sound and complete w.r.t to specifications
▶ Abstraction: reason about their set of outcomes
▶ Avoid probabilistic reasoning
▶ The idea of verified generators dates back to Dybjer et al. 1

♦ Checkers
▶ Prove that they correspond to the right logical proposition

♦ We give specifications to QuickChick combinators and prove
them correct w.r.t them

▶ verify the testing tool itself
▶ facilitate reasoning about combinators and checkers

♦ Case studies: Red-black trees (next), testing noninterference

1P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6 / 22

Contributions

• Testing framework: QuickChick
• Verification framework

♦ We give semantics to both generators and checkers
♦ Generators

▶ Prove them sound and complete w.r.t to specifications
▶ Abstraction: reason about their set of outcomes
▶ Avoid probabilistic reasoning
▶ The idea of verified generators dates back to Dybjer et al. 1

♦ Checkers
▶ Prove that they correspond to the right logical proposition

♦ We give specifications to QuickChick combinators and prove
them correct w.r.t them

▶ verify the testing tool itself
▶ facilitate reasoning about combinators and checkers

♦ Case studies: Red-black trees (next), testing noninterference

1P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6 / 22

Contributions

• Testing framework: QuickChick
• Verification framework

♦ We give semantics to both generators and checkers
♦ Generators

▶ Prove them sound and complete w.r.t to specifications
▶ Abstraction: reason about their set of outcomes
▶ Avoid probabilistic reasoning
▶ The idea of verified generators dates back to Dybjer et al. 1

♦ Checkers
▶ Prove that they correspond to the right logical proposition

♦ We give specifications to QuickChick combinators and prove
them correct w.r.t them

▶ verify the testing tool itself
▶ facilitate reasoning about combinators and checkers

♦ Case studies: Red-black trees (next), testing noninterference

1P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6 / 22

Running Example
Red-black Trees

7 / 22

Red-Black Trees

• Binary trees with an additional color label to each node� �
1 Inductive color := Red | Black.
2 Inductive tree :=
3 | Leaf : tree
4 | Node : color → tree → nat → tree → tree.� �
• Invariant:

♦ The root is always black
♦ The leaves are empty and black
♦ For each node the path to each possible leaf has the same

number of black nodes
♦ Red nodes can only have black children

• RB tree operations should preserve the invariant
• We want to test that for insert

8 / 22

Declarative Definitions

• The property to we would like to test� �
1 Definition insert_preserves_rb : Prop :=
2 ∀ (x : nat) (t : tree) , is_redblack t → is_redblack (insert x t).� �

• Red-black invariant� �
1 Inductive is_redblack' : tree → color → nat → Prop :=
2 | IsRB_leaf: ∀ c, is_redblack' Leaf c 0
3 | IsRB_r:
4 ∀ n tl tr h, is_redblack' tl Red h → is_redblack' tr Red h →
5 is_redblack' (Node Red tl n tr) Black h
6 | IsRB_b:
7 ∀ c n tl tr h, is_redblack' tl Black h → is_redblack' tr Black h →
8 is_redblack' (Node Black tl n tr) c (S h).
9

10 Definition is_redblack (t: tree) : Prop := ∃ h, is_redblack' t Red h.� �
• But declarative definitions are not well suited to testing

9 / 22

Declarative Definitions

• The property to we would like to test� �
1 Definition insert_preserves_rb : Prop :=
2 ∀ (x : nat) (t : tree) , is_redblack t → is_redblack (insert x t).� �
• Red-black invariant� �

1 Inductive is_redblack' : tree → color → nat → Prop :=
2 | IsRB_leaf: ∀ c, is_redblack' Leaf c 0
3 | IsRB_r:
4 ∀ n tl tr h, is_redblack' tl Red h → is_redblack' tr Red h →
5 is_redblack' (Node Red tl n tr) Black h
6 | IsRB_b:
7 ∀ c n tl tr h, is_redblack' tl Black h → is_redblack' tr Black h →
8 is_redblack' (Node Black tl n tr) c (S h).
9

10 Definition is_redblack (t: tree) : Prop := ∃ h, is_redblack' t Red h.� �
• But declarative definitions are not well suited to testing

9 / 22

Testing the property
We need...

• An (efficiently) executable definition of the invariant� �
1 Definition is_redblack_bool (t : tree) : bool :=
2 is_black_balanced t && has_no_red_red Red t.� �

• An arbitrary tree generator� �
1 Fixpoint genAnyTree_depth (h : nat) : G tree :=
2 match h with
3 | 0 ⇒ returnGen Leaf
4 | S h' ⇒ freq [(1, returnGen Leaf);
5 (9, liftGen4 Node genColor (genAnyTree_depth h')
6 genNat (genAnyTree_depth h'))]
7 end.
8 Definition genAnyTree : G tree := bindGen genNat genAnyTree_depth.� �
• A property checker� �

1 Definition insert_preserves_rb_checker (genTree : G tree) : Checker :=
2 forAll genNat (fun n ⇒ forAll genTree (fun t ⇒
3 is_redblack_bool t ==> is_redblack_bool (insert n t))).� �

10 / 22

Testing the property
We need...

• An (efficiently) executable definition of the invariant� �
1 Definition is_redblack_bool (t : tree) : bool :=
2 is_black_balanced t && has_no_red_red Red t.� �
• An arbitrary tree generator� �

1 Fixpoint genAnyTree_depth (h : nat) : G tree :=
2 match h with
3 | 0 ⇒ returnGen Leaf
4 | S h' ⇒ freq [(1, returnGen Leaf);
5 (9, liftGen4 Node genColor (genAnyTree_depth h')
6 genNat (genAnyTree_depth h'))]
7 end.
8 Definition genAnyTree : G tree := bindGen genNat genAnyTree_depth.� �

• A property checker� �
1 Definition insert_preserves_rb_checker (genTree : G tree) : Checker :=
2 forAll genNat (fun n ⇒ forAll genTree (fun t ⇒
3 is_redblack_bool t ==> is_redblack_bool (insert n t))).� �

10 / 22

Testing the property
We need...

• An (efficiently) executable definition of the invariant� �
1 Definition is_redblack_bool (t : tree) : bool :=
2 is_black_balanced t && has_no_red_red Red t.� �
• An arbitrary tree generator� �

1 Fixpoint genAnyTree_depth (h : nat) : G tree :=
2 match h with
3 | 0 ⇒ returnGen Leaf
4 | S h' ⇒ freq [(1, returnGen Leaf);
5 (9, liftGen4 Node genColor (genAnyTree_depth h')
6 genNat (genAnyTree_depth h'))]
7 end.
8 Definition genAnyTree : G tree := bindGen genNat genAnyTree_depth.� �
• A property checker� �

1 Definition insert_preserves_rb_checker (genTree : G tree) : Checker :=
2 forAll genNat (fun n ⇒ forAll genTree (fun t ⇒
3 is_redblack_bool t ==> is_redblack_bool (insert n t))).� �

10 / 22

So, are we done?

� �
1 QuickChick (insert_preserves_rb_checker genAnyTree).
2

3 *** Gave up! Passed only 2415 tests
4 Discarded: 20000� �

• Our simple generator is very inefficient!
• In QuickChick test cases that do not satisfy the preconditions
are discarded

• For most of the test cases the property is vacuously true� �
1 Definition insert_preserves_rb_checker (genTree : G tree) : Checker :=
2 forAll genNat (fun n ⇒ forAll genTree (fun t ⇒
3 is_redblack_bool t ==> is_redblack_bool (insert n t))).� �

11 / 22

So, are we done?

� �
1 QuickChick (insert_preserves_rb_checker genAnyTree).
2

3 *** Gave up! Passed only 2415 tests
4 Discarded: 20000� �
• Our simple generator is very inefficient!
• In QuickChick test cases that do not satisfy the preconditions
are discarded

• For most of the test cases the property is vacuously true� �
1 Definition insert_preserves_rb_checker (genTree : G tree) : Checker :=
2 forAll genNat (fun n ⇒ forAll genTree (fun t ⇒
3 is_redblack_bool t ==> is_redblack_bool (insert n t))).� �

11 / 22

Can we do better?

� �
1 Program Fixpoint genRBTree_height (hc : nat*color) { wf wf_hc hc} : G tree :=
2 match hc with
3 | (0, Red) ⇒ returnGen Leaf
4 | (0, Black) ⇒ oneOf [returnGen Leaf; (do! n ← arbitrary; returnGen (Node Red Leaf n Leaf))]
5 | (S h, Red) ⇒ liftGen4 Node (returnGen Black) (genRBTree_height (h, Black))
6 genNat (genRBTree_height (h, Black))
7 | (S h, Black) ⇒ do! c'← genColor;
8 let h' := match c' with Red ⇒ S h | Black⇒ h end in
9 liftGen4 Node (returnGen c') (genRBTree_height (h', c'))

10 genNat (genRBTree_height (h', c')) end.
11
12 Definition genRBTree := bindGen genNat (fun h⇒ genRBTree_height (h, Red)).� �

• We claim that this generator produces only RB trees.

� �
1 QuickChick (insert_preserves_rb_checker genRBTree).
2

3 +++ OK, passed 10000 tests� �
• It seems that it works well in practice

12 / 22

Can we do better?

� �
1 Program Fixpoint genRBTree_height (hc : nat*color) { wf wf_hc hc} : G tree :=
2 match hc with
3 | (0, Red) ⇒ returnGen Leaf
4 | (0, Black) ⇒ oneOf [returnGen Leaf; (do! n ← arbitrary; returnGen (Node Red Leaf n Leaf))]
5 | (S h, Red) ⇒ liftGen4 Node (returnGen Black) (genRBTree_height (h, Black))
6 genNat (genRBTree_height (h, Black))
7 | (S h, Black) ⇒ do! c'← genColor;
8 let h' := match c' with Red ⇒ S h | Black⇒ h end in
9 liftGen4 Node (returnGen c') (genRBTree_height (h', c'))

10 genNat (genRBTree_height (h', c')) end.
11
12 Definition genRBTree := bindGen genNat (fun h⇒ genRBTree_height (h, Red)).� �

• We claim that this generator produces only RB trees.� �
1 QuickChick (insert_preserves_rb_checker genRBTree).
2

3 +++ OK, passed 10000 tests� �

• It seems that it works well in practice

12 / 22

Can we do better?

� �
1 Program Fixpoint genRBTree_height (hc : nat*color) { wf wf_hc hc} : G tree :=
2 match hc with
3 | (0, Red) ⇒ returnGen Leaf
4 | (0, Black) ⇒ oneOf [returnGen Leaf; (do! n ← arbitrary; returnGen (Node Red Leaf n Leaf))]
5 | (S h, Red) ⇒ liftGen4 Node (returnGen Black) (genRBTree_height (h, Black))
6 genNat (genRBTree_height (h, Black))
7 | (S h, Black) ⇒ do! c'← genColor;
8 let h' := match c' with Red ⇒ S h | Black⇒ h end in
9 liftGen4 Node (returnGen c') (genRBTree_height (h', c'))

10 genNat (genRBTree_height (h', c')) end.
11
12 Definition genRBTree := bindGen genNat (fun h⇒ genRBTree_height (h, Red)).� �

• We claim that this generator produces only RB trees.� �
1 QuickChick (insert_preserves_rb_checker genRBTree).
2

3 +++ OK, passed 10000 tests� �
• It seems that it works well in practice

12 / 22

Are we there yet?

• The previous generator is dubious
(complex + unverified → dubious)

• This generator also pass all the tests with no discards� �
1 Definition genRBTree := returnGen Leaf.� �

13 / 22

Are we there yet?

• The previous generator is dubious
(complex + unverified → dubious)

• This generator also pass all the tests with no discards� �
1 Definition genRBTree := returnGen Leaf.� �

13 / 22

Our framework

• How do we know that we are generating all possible RB trees
and only them?

• Idea: Assign semantics to each generator mapping them to the
support of the underlying probability distribution

• How do we know that we are testing the logical proposition we
started with?

• Idea: Assign semantics to each checker mapping it to the
logical proposition that it tests.� �

1 semGen : ∀ A : Type, G A → set A
2

3

4 semChecker : Checker → Prop� �

14 / 22

Our framework

• How do we know that we are generating all possible RB trees
and only them?

• Idea: Assign semantics to each generator mapping them to the
support of the underlying probability distribution

• How do we know that we are testing the logical proposition we
started with?

• Idea: Assign semantics to each checker mapping it to the
logical proposition that it tests.� �

1 semGen : ∀ A : Type, G A → set A
2

3

4 semChecker : Checker → Prop� �
14 / 22

Formal proof

� �
1 Lemma semRBTree : semGen genRBTree ≡ [set t | is_redblack t].� �

� �
1 Lemma is_redblackP t : reflect (is_redblack t) (is_redblack_bool t).� �
� �

1 Lemma insert_preserves_rb_checker_correct:
2 semChecker (insert_preserves_rb_checker genRBTree)
3 ↔ insert_preserves_rb.� �
• Complete example: 150 lines of proofs for 236 lines of
definitions.

15 / 22

Formal proof

� �
1 Lemma semRBTree : semGen genRBTree ≡ [set t | is_redblack t].� �
� �

1 Lemma is_redblackP t : reflect (is_redblack t) (is_redblack_bool t).� �

� �
1 Lemma insert_preserves_rb_checker_correct:
2 semChecker (insert_preserves_rb_checker genRBTree)
3 ↔ insert_preserves_rb.� �
• Complete example: 150 lines of proofs for 236 lines of
definitions.

15 / 22

Formal proof

� �
1 Lemma semRBTree : semGen genRBTree ≡ [set t | is_redblack t].� �
� �

1 Lemma is_redblackP t : reflect (is_redblack t) (is_redblack_bool t).� �
� �

1 Lemma insert_preserves_rb_checker_correct:
2 semChecker (insert_preserves_rb_checker genRBTree)
3 ↔ insert_preserves_rb.� �

• Complete example: 150 lines of proofs for 236 lines of
definitions.

15 / 22

Formal proof

� �
1 Lemma semRBTree : semGen genRBTree ≡ [set t | is_redblack t].� �
� �

1 Lemma is_redblackP t : reflect (is_redblack t) (is_redblack_bool t).� �
� �

1 Lemma insert_preserves_rb_checker_correct:
2 semChecker (insert_preserves_rb_checker genRBTree)
3 ↔ insert_preserves_rb.� �
• Complete example: 150 lines of proofs for 236 lines of
definitions.

15 / 22

Semantics

• Generator type : Definition G A = nat → RandomSeed → A.� �
1 Definition semGenSize {A : Type} (g : G A) (size : nat) : set A :=
2

∪
seed∈Seeds

g size seed.

3

4 Definition semGen { A : Type} (g : G A) : set A :=
5

∪
size∈N

semGenSize g size.� �

• Checkers are internally represented as generators of testing
results� �

1 Definition semCheckerSize (c : Checker) (s : nat) : Prop :=
2 (successful @: semGenSize c s) \ subset [set true].
3

4 Definition semChecker (c : Checker) : Prop := ∀ s, semCheckerSize c s.� �

16 / 22

Semantics

• Generator type : Definition G A = nat → RandomSeed → A.� �
1 Definition semGenSize {A : Type} (g : G A) (size : nat) : set A :=
2

∪
seed∈Seeds

g size seed.

3

4 Definition semGen { A : Type} (g : G A) : set A :=
5

∪
size∈N

semGenSize g size.� �
• Checkers are internally represented as generators of testing
results� �

1 Definition semCheckerSize (c : Checker) (s : nat) : Prop :=
2 (successful @: semGenSize c s) \ subset [set true].
3

4 Definition semChecker (c : Checker) : Prop := ∀ s, semCheckerSize c s.� �
16 / 22

Size Abstraction

• Abstracting of sizes is not always possible! In the general case
the semantics and the specifications need to be size parametric.� �

1 Lemma semBindSize A B (g : G A) (f : A → G B) (s : nat) :
2 semGenSize (bindGen g f) s ≡
3 \ bigcup_(a in semGenSize g s) semGenSize (f a) s.� �
• Size abtraction only possible for unsized and size-monotonic
generators� �

1 Lemma semBindSizeMonotonic :
2 ∀ { A B} (g : G A) (f : A → G B)
3 `{ SizeMonotonic _ g} `{ ∀ a, SizeMonotonic (f a)},
4 semGen (bindGen g f) ≡ \bigcup_(a in semGen g) semGen (f a).� �
• We provide size parametrized specifications for all of the
combinators along with unsized specifications

17 / 22

Foundational Verification

• Using our possibilistic semantics we verify QuickChick all the
way down relying on a very small set of assumptions

• We verify all the combinators of QuickChick providing a library
of generic lemmas that can be used in a compositional way

Splittable PRNG (OCaml)

Low-Level Generators

High-Level Generators

User Code

Generator Representation

Checkers

18 / 22

Assumptions

• QuickChick's PRNG (pseudorandom number generator) is
written in OCaml

• Low-level operations (such as random seed handling, generation
of natural numbers, etc.) and their specifications are
axiomatized in Coq

• We could remove most of the axioms by implementing PRNG in
Coq

• One axiom would remain
♦ The type of random seeds is infinite

• Our model abstracts away from mathematical randomness
(probabilities), which is an idealization of pseudorandomness

19 / 22

Larger case study: Testing Noninterference

• We verified existing generators used in complex testing
infrastructure for an information flow control (IFC) machine

• Generators used to produce pairs of indistinguishable states
• We proved that the generators were sound and complete w.r.t a
subset of all possible indistinguishable states

• The process revealed bugs in generation
• Minimal changes to existing testing code were required
• 2000 lines of proofs for 2000 lines of Coq code (1000 lines of
definitions and 1000 lines of generation code)

20 / 22

Conclusion and Future work

• Coq framework for verified PBT, integrated in QuickChick
♦ https://github.com/QuickChick

• First verified QuickCheck implementation
• We avoid probabilisting reasoning at all level using possibilistic
semantics

• Modular, scalable, minimal changes to existing code
• Future work: Reduce verification effort (typeclass automation,
certificate producing testing automation)

21 / 22

https://github.com/QuickChick

Thank You!
Questions?

22 / 22

Related work

• Dybjer et al. first proposed the idea of verified generators
(completeness property)

• Focaltest: Verified tool that automatically generates test data
that satisfy MC/DC coverage for preconditions using constraint
reasoning

• HOL-TestGen: Introduced explicit test-hypotheses that represent
what remains to be proved

1 / 2

Examples of specifications

� �
1 Lemma semReturn {A} (x : A) : semGen (returnGen x) ≡ [set x].
2

3 Lemma semBindUnsized1 :
4 ∀ A B (g : G A) (f : A → G B) `{ Unsized _ g},
5 semGen (bindGen g f) ≡ \bigcup_(a in semGen g) semGen (f a).
6

7 Lemma semFmap :
8 ∀ A B (f : A → B) (g : G A), semGen (fmap f g) ≡ f @: semGen g.
9

10 Lemma semOneOf : ∀ A (g0 : G A) (gs : list (G A)),
11 semGen (oneOf (g0 ;; gs)) ≡ \bigcup_(g in (g0 :: gs)) semGen g.
12

13 Lemma semListOfUnsized:
14 ∀ { A} (g : G A) (k : nat) `{ Unsized _ g},
15 semGen (listOf g) ≡ [set l | l \ subset semGen g].� �

2 / 2

	Appendix

