Foundational Property Based Testing
ITP, Nanjing 2015

Maxime Dénés
3

Zoe Paraskevopoulou'? Catilin Hritcu

Leonidas Lampropoulos® Benjamin C. Pierce

"nria Paris-Rocquencourt 2ENS Cachan 3University of Pennsylvania

August 27,2015

1/22

Testing and Proving

e Proving
¢ very expensive, hard
¢ strong guarantees

2/22

Testing and Proving

e Proving
¢ very expensive, hard
¢ strong guarantees

e Testing

¢ fast, easy
¢ weak guarantees

2/22

Testing and Proving

e Proving
¢ very expensive, hard
¢ strong guarantees
e Testing
¢ fast, easy
¢ weak guarantees
e Testing helps proving!
¢ Decreases the cost of formal proofs
¢ Many successful projects that integrate testing into a proof

assistant (Isabelle/HOL, Adga/Alfa, ...)
¢ QuickChic for Coq

2/22

Testing and Proving

e Proving
¢ very expensive, hard
¢ strong guarantees
e Testing
¢ fast, easy
¢ weak guarantees
e Testing helps proving!
¢ Decreases the cost of formal proofs
¢ Many successful projects that integrate testing into a proof

assistant (Isabelle/HOL, Adga/Alfa, ...)
¢ QuickChic for Coq

e Can proving help testing?

2/22

Foundational property based testing framework

e Formally verify testing infrastucture
e Does it correspond to the desired property?

e Our framework builts on top of QuickChick, our PTB tool for
Coq

3/22

Property Based Testing

¢ Allows to test code in terms of functional correctness by
generating a large number of randomly generated inputs

e High level of automation

4/22

Property Based Testing

¢ Allows to test code in terms of functional correctness by
generating a large number of randomly generated inputs

e High level of automation
e The user has to write:

4/22

Property Based Testing

¢ Allows to test code in terms of functional correctness by
generating a large number of randomly generated inputs
e High level of automation

e The user has to write:
¢+ Generators

» Random generation of input data

4/22

Property Based Testing

¢ Allows to test code in terms of functional correctness by
generating a large number of randomly generated inputs
e High level of automation
e The user has to write:
¢+ Generators
» Random generation of input data
¢+ Checkers

> programs that test the desired specification

4/22

QuickChick

&,

=

 Property based testing for Coq (port of Haskell's QuickCheck)
e Implemented in Coq
¢ It relies on extraction to OCaml for efficient execution

e Low level random generation primitives are implemented in
OCaml

e Provides a library of combinators that are used to construct
Generators and Checkers

5/22

Contributions

e Testing framework: QuickChick

'P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6/22

Contributions

e Testing framework: QuickChick
e Verification framework

'P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6/22

Contributions

e Testing framework: QuickChick
e Verification framework
¢ We give semantics to both generators and checkers

'P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6/22

Contributions

e Testing framework: QuickChick
e Verification framework
¢ We give semantics to both generators and checkers
¢ Generators
> Prove them sound and complete w.r.t to specifications
Abstraction: reason about their set of outcomes

>
> Avoid probabilistic reasoning
> The idea of verified generators dates back to Dybjer et al. '

'P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6/22

Contributions

e Testing framework: QuickChick

¢ Verification framework
¢ We give semantics to both generators and checkers
¢ Generators

> Prove them sound and complete w.r.t to specifications

» Abstraction: reason about their set of outcomes

> Avoid probabilistic reasoning

> The idea of verified generators dates back to Dybjer et al. '
¢ Checkers

> Prove that they correspond to the right logical proposition

'P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6/22

Contributions

e Testing framework: QuickChick

¢ Verification framework
¢ We give semantics to both generators and checkers
¢ Generators

> Prove them sound and complete w.r.t to specifications
» Abstraction: reason about their set of outcomes
> Avoid probabilistic reasoning
> The idea of verified generators dates back to Dybjer et al. '
¢ Checkers
> Prove that they correspond to the right logical proposition
¢ We give specifications to QuickChick combinators and prove
them correct w.r.t them
> verify the testing tool itself
> facilitate reasoning about combinators and checkers

'P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6/22

Contributions

e Testing framework: QuickChick
e Verification framework
¢ We give semantics to both generators and checkers
¢ Generators
> Prove them sound and complete w.r.t to specifications
» Abstraction: reason about their set of outcomes
> Avoid probabilistic reasoning
> The idea of verified generators dates back to Dybjer et al. '
¢ Checkers
> Prove that they correspond to the right logical proposition
¢ We give specifications to QuickChick combinators and prove
them correct w.r.t them
> verify the testing tool itself
> facilitate reasoning about combinators and checkers

¢+ Case studies: Red-black trees (next), testing noninterference

'P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in
dependent type theory. TPHOLs. 2003.

6/22

Red-Black Trees

e Binary trees with an additional color label to each node

| | Inductive color := Red | Black.

2 | Inductive tree :=

3 || Leaf : tree

4 || Node: color — tree — nat — tree — tree.

¢ Invariant:

¢ The root is always black

¢ The leaves are empty and black

¢ For each node the path to each possible leaf has the same
number of black nodes

¢ Red nodes can only have black children

* RB tree operations should preserve the invariant

¢ We want to test that for insert

8/22

Declarative Definitions

e The property to we would like to test

| | Definition insert_preserves_rb: Prop :=
2 V (x : nat) (t: tree) , is_redblackt — is_redblack (insert x t).

9/22

Declarative Definitions

e The property to we would like to test

| | Definition insert_preserves_rb: Prop :=
2 V (x : nat) (t: tree) , is_redblackt — is_redblack (insert x t).

e Red-black invariant

Inductive is_redblack' : tree — color — nat — Prop :=

| IsRB_leaf: V ¢, is_redblack' Leaf c 0

| IsRB_r:

V' n tl tr h, is_redblack' t1 Red h — is_redblack' tr Red h —
is_redblack' (Node Red t1 n tr) Black h

IsRB_b:

V cn tl tr h, is_redblack' t1 Black h — is_redblack'tr Blackh —

is_redblack' (Node Black t1l n tr) c (S h).

© 0V O N O VA WN —

Definition is_redblack (t:tree) : Prop := 3 h, is_redblack' t Red h.

e But declarative definitions are not well suited to testing

9/22

Testing the property
We need...

¢ An (efficiently) executable definition of the invariant

| | Definition is_redblack_bool (t : tree) : bool :=
2 is_black_balanced t && has_no_red_red Red t.

10/22

Testing the property

We need...

W N o U AW N —

An (efficiently) executable definition of the invariant

Definition is_redblack_bool (t : tree) : bool :=
is_black_balanced t && has_no_red_red Red t.

An arbitrary tree generator

Fixpoint genAnyTree_depth (h: nat) : G tree :=
match h with
| 0 = returnGen Leaf
| Sh' = freq[(l, returnGen Leaf);
(9, 1liftGen4 Node genColor (genAnyTree_depth h')
genNat (genAnyTree_depth h'))]
end.
Definition genAnyTree: G tree := bindGen genNat genAnyTree_depth.

10/22

Testing the property

We need...

W N o U AW N —

An (efficiently) executable definition of the invariant

Definition is_redblack_bool (t : tree) : bool :=
is_black_balanced t && has_no_red_red Red t.

An arbitrary tree generator

Fixpoint genAnyTree_depth (h: nat) : G tree :=
match h with
| 0 = returnGen Leaf
| Sh' = freq[(l, returnGen Leaf);
(9, 1liftGen4 Node genColor (genAnyTree_depth h')
genNat (genAnyTree_depth h'))]
end.
Definition genAnyTree: G tree := bindGen genNat genAnyTree_depth.

A property checker

Definition insert_preserves_rb_checker (genTree: G tree) : Checker :=

forAll genNat (fun n = forAll genTree (funt =
is_redblack_bool t ==> is_redblack_bool (insert n t))).

10/22

So, are we done?

QuickChick (insert_preserves_rb_checker genAnyTree).

I
2
3 | ¥* Gave up! Passed only 2415 tests
4 | Discarded: 20000

11/22

So, are we done?

QuickChick (insert_preserves_rb_checker genAnyTree).

I
2
3 | ¥* Gave up! Passed only 2415 tests
4 | Discarded: 20000

e Our simple generator is very inefficient!

¢ In QuickChick test cases that do not satisfy the preconditions
are discarded

e For most of the test cases the property is vacuously true

| | Definition insert_preserves_rb_checker (genTree: G tree) : Checker :=
2 forAll genNat (fun n = forAll genTree (funt =
3 is_redblack_bool t ==> is_redblack_bool (insert n t))).

11/22

Can we do better?

| | Program Fixpoint genRBTree_height (hc : nat*color) {wf wf_hc hc} : G tree :=
2 match hc with

3 | (0, Red) = returnGen Leaf

4 | (0, Black) = oneOf [returnGen Leaf; (do! n <— arbitrary; returnGen (Node Red Leaf n Leaf))]
5 | (8 h, Red) = 1liftGen4 Node (returnGen Black) (genRBTree_height (h, Black))
6 genNat (genRBTree_height (h, Black))

7 | (S h, Black) = do!c' < genColor;

8 let h' := matchc'with Red = Sh|Black = hendin

9 1iftGen4 Node (returnGen c') (genRBTree_height (h', c')

10 genNat (genRBTree_height (b, c')) end

I

|12 | Definition genRBTree := bindGen genNat (fun h = genRBTree_height (h, Red)).

e We claim that this generator produces only RB trees.

12/22

Can we do better?

©NO LA WN —

Program Fixpoint genRBTree_height (hc : nat*color) {wf wf_hc hc} : G tree :=
match hc with
| (0, Red) = returnGen Leaf
| (0, Black) = oneOf [returnGen Leaf; (do! n <— arbitrary; returnGen (Node Red Leaf n Leaf))]
| (8 h, Red) = 1liftGen4 Node (returnGen Black) (genRBTree_height (h, Black))
genNat (genRBTree_height (h, Black))
| (S h, Black) = do!c' < genColor;
let h' := matchc'with Red = Sh|Black = hendin
1iftGen4 Node (returnGen c') (genRBTree_height (h', c')
genNat (genRBTree_height (b, c')) end

Definition genRBTree := bindGen genNat (fun h = genRBTree_height (h, Red)).

e We claim that this generator produces only RB trees.

| | QuickChick (insert_preserves_rb_checker genRBTree).

3 | +++ 0K, passed 10000 tests

12/22

Can we do better?

©NO LA WN —

Program Fixpoint genRBTree_height (hc : nat*color) {wf wf_hc hc} : G tree :

match hc with
| (0, Red) = returnGen Leaf

| (0, Black) = oneOf [returnGen Leaf; (do! n <— arbitrary; returnGen (Node Red Leaf n Leaf))]

| (8 h, Red) = 1liftGen4 Node (returnGen Black) (genRBTree_height (h, Black))
genNat (genRBTree_height (h, Black))

| (S h, Black) = do!c' < genColor;
let h' := matchc'with Red = Sh|Black = hendin
1iftGen4 Node (returnGen c') (genRBTree_height (h', c')
genNat (genRBTree_height (b, c')) end

Definition genRBTree := bindGen genNat (fun h = genRBTree_height (h, Red)).

e We claim that this generator produces only RB trees.

| | QuickChick (insert_preserves_rb_checker genRBTree).

3 | +++ 0K, passed 10000 tests

It seems that it works well in practice

12/22

Are we there yet?

e The previous generator is dubious
(complex + unverified — dubious)

13/22

Are we there yet?

e The previous generator is dubious
(complex + unverified — dubious)

e This generator also pass all the tests with no discards

I [Definition genRBTree := returnGen Leaf.]

13/22

Our framework

¢ How do we know that we are generating all possible RB trees
and only them?

e ldea: Assign semantics to each generator mapping them to the
support of the underlying probability distribution

14/22

Our framework

AW -

How do we know that we are generating all possible RB trees
and only them?

Idea: Assign semantics to each generator mapping them to the
support of the underlying probability distribution

How do we know that we are testing the logical proposition we
started with?

Idea: Assign semantics to each checker mapping it to the
logical proposition that it tests.

semGen: V A : Type, G A — setA

semChecker : Checker — Prop

14/22

Formal proof

I [Lemma semRBTree : semGen genRBTree = [set t| is_redblack t]. }

15/22

Formal proof

I [Lemma semRBTree : semGen genRBTree = [set t| is_redblack t]. j

I ELemma is_redblackP t : reflect (is_redblack t) (is_redblack_bool t). j

15/22

Formal proof

I [Lemma semRBTree : semGen genRBTree = [set t| is_redblack t]. j

I ELemma is_redblackP t: reflect (is_redblack t) (is_redblack_bool t). j

| | Lemma insert_preserves_rb_checker_correct:
2 semChecker (insert_preserves_rb_checker genRBTree)
3 <> insert_preserves_rb.

15/22

Formal proof

I [Lemma semRBTree : semGen genRBTree = [set t| is_redblack t]. j

I ELemma is_redblackP t: reflect (is_redblack t) (is_redblack_bool t). j

| | Lemma insert_preserves_rb_checker_correct:
2 semChecker (insert_preserves_rb_checker genRBTree)
3 <> insert_preserves_rb.

e Complete example: 150 lines of proofs for 236 lines of
definitions.

15/22

Semantics

e Generator type : Definition G A = nat — RandomSeed — A.

| | Definition semGenSize {A : Type} (g : G A) (size: nat) : set A :=
2 U gsize seed.
seed€ Seeds

4 | Definition semGen {A : Type} (g : G A) : set A :=
5 U semGenSize g size.
size€N

16/22

Semantics

e Generator type : Definition G A = nat — RandomSeed — A.

| | Definition semGenSize {A : Type} (g : G A) (size: nat) : set A :=
2 U gsize seed.
seed€ Seeds

4 | Definition semGen {A : Type} (g : G A) : set A :=
5 U semGenSize g size.
size€N

e Checkers are internally represented as generators of testing
results

Definition semCheckerSize (¢ : Checker) (s : nat) : Prop :=
(successful @ semGenSize c s) \subset [set true].

AW -

Definition semChecker (c : Checker) : Prop :=V s, semCheckerSize c s.

16/22

Size Abstraction

e Abstracting of sizes is not always possible! In the general case
the semantics and the specifications need to be size parametric.

| | Lemma semBindSize AB (g: G 4) (f: A — GB)(s : nat) :
2 semGenSize (bindGen g f) s =
3 \bigcup_(a in semGenSize g s) semGenSize (f a) s.

e Size abtraction only possible for unsized and size-monotonic
generators

Lemma semBindSizeMonotonic :
V{AB} (g: GA) (f: A — GB)
‘{ SizeMonotonic _ g} {V a, SizeMonotonic (f a)},
semGen (bindGen g f) = \bigcup_(a in semGen g) semGen (f a).

A w N -

e We provide size parametrized specifications for all of the
combinators along with unsized specifications

17122

Foundational Verification

¢ Using our possibilistic semantics we verify QuickChick all the
way down relying on a very small set of assumptions

e We verify all the combinators of QuickChick providing a library
of generic lemmas that can be used in a compositional way

l User Code I

]

Checkers

High-Level Generators

l Low-Level Generators I

]

l Splittable PRNG (OCaml) I l Generator Representation I

18/22

Assumptions

QuickChick's PRNG (pseudorandom number generator) is
written in OCaml

Low-level operations (such as random seed handling, generation
of natural numbers, etc.) and their specifications are
axiomatized in Coq
We could remove most of the axioms by implementing PRNG in
Coq
One axiom would remain

¢ The type of random seeds is infinite

Our model abstracts away from mathematical randomness
(probabilities), which is an idealization of pseudorandomness

19/22

Larger case study: Testing Noninterference

e We verified existing generators used in complex testing
infrastructure for an information flow control (IFC) machine

e Generators used to produce pairs of indistinguishable states

* We proved that the generators were sound and complete w.r.t a
subset of all possible indistinguishable states

e The process revealed bugs in generation
e Minimal changes to existing testing code were required

e 2000 lines of proofs for 2000 lines of Coq code (1000 lines of
definitions and 1000 lines of generation code)

20/22

Conclusion and Future work

e Coq framework for verified PBT, integrated in QuickChick
¢ https://github.com/QuickChick
e First verified QuickCheck implementation

* We avoid probabilisting reasoning at all level using possibilistic
semantics

e Modular, scalable, minimal changes to existing code

¢ Future work: Reduce verification effort (typeclass automation,
certificate producing testing automation)

21722

https://github.com/QuickChick

Thank You!

Questions?

22/22

Related work

e Dybjer et al. first proposed the idea of verified generators
(completeness property)

¢ Focaltest: Verified tool that automatically generates test data
that satisfy MC/DC coverage for preconditions using constraint
reasoning

e HOL-TestGen: Introduced explicit test-hypotheses that represent
what remains to be proved

Examples of specifications

VO NN W N —

G X oo =-o

p
Lemma semReturn {A} (x : A) : semGen (returnGenx) = [set x].

Lemma semBindUnsized1 :
VAB(g: GA) (f: A — GB) {Unsized _ g},
semGen (bindGen g f) = \bigcup_(a in semGen g) semGen (f a).

Lemma semFmap :
VAB(f: A— B)(g: GA), semGen (fmap f g) = f @ semGen g.

Lemma semOneOf : V A (g0 : G A) (gs : list (G A)),
Lemma semList0fUnsized:

V{A} (g: GA) (k: nat) {Unsized _ g},
semGen (1istOf g) = [set 1| 1 \subset semGen g].

semGen (oneOf (g0 ;; gs)) = \bigcup_(gin (g0 :: gs)) semGen g.

2/2

	Appendix

